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Abstract-  The Unified Power Format (UPF) or IEEE-1801, is not just a language to denote low-power intents or power 

management specifications for a design – it’s a complete command set for verification and implementation of such low-power 

designs. UPF paved the way to accomplish low power verification with specialized simulator from very early stage of design 

abstraction from RTL. These low power enabled simulators allows design instrumentation with UPF artifacts to mimic accurate 

low power behavior at power up-down-cycles where, for example, the inputs and sequential logic in a power down domain needs 

to be corrupted onto unknown (i.e. x), or propagate x from OFF to ON domain, or analyze x-state initialization of regs after 

power up. So evidently 4 state logic value (0, 1, x, & z) are essential for accurate low power logic functional verification. 

However, capacity limit and event driven execution mechanism makes simulator almost impossible to run realistic workloads 

with multi-pass power sequencing and huge power management architecture at high-speed. Hence hardware emulators comes 

into play because they are cycle based, runs very fast (in MHz range), accommodate very large designs (~10 Billion Gates SoC) 

and obviously the best suit for running realistic low power workloads. However, emulators are made of silicon and only allows 2 

state logic value (0, 1), which makes UPF based verification very challenging. In this paper, we establish the orchestration of 

industry's first 4 state logic based hardware emulation technology that not only simplifies UPF based design verification but 

also significantly shorten the verification turn-around-time with real world power management workloads.         
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I INTRODUCTION 
The IEEE 1801 standard specifies the low-power intent, i.e., UPF for any design. The UPF is the ultimate 

abstraction of low-power methodologies today. It provides the concepts and the artifacts of power management 

architecture, power aware verification and low-power implementation mechanism for any design. It provides the 

notions of power architecture from very early stage of design abstraction. Now it’s the industry trend and standard for 

lowering static and in some special cases dynamic power dissipation in every digital design. Overwhelmingly UPF 

standout as the only alternative choice of lowering power dissipation when fabrication process technology advanced 

below 65nm.  

Almost all SoC today heavily utilizes UPF for power management and low power implications. These SoCs 

are enormous in size, typically comprise of 8-10 Billion Gates (BG) which consumes 60-70% of design efforts in 

verification and easily hits the capacity limits of most verification tool and makes design-verification turn-around time 

miserably long.  

On the contrary, todays datacenter-class emulation systems are highly scalable in terms of design capacity 

(scales up to 10 BG designs) and can run accelerated simulation up to 4 MHz speed on hardware. Furthermore, the 

emulation allows realistic loads for UPF based designs. For example, emulation allows multi-pass power sequencing 

workload compared to single-pass in simulation. This enables complex interaction scenarios and repeated power state 

entry, retain or exit with diversified sets of external stimulus. Figure 1 shows the diagram of today’s datacenter-class 

emulator. 

Generally, UPF enabled emulation based low power verification flow is suitable for long running directed 

tests - that do not require complex testbench interaction. Specifically, the UPF verification comprise of power 

management, BIOS, firmware, OS, and application-level workloads. Naturally thousands of hierarchical scope based 

UPF files require to process, overlay supply network circuitry and instrument the design with all types of low power 

components like power supply network, power switches, isolations, level-shifters, repeaters, retentions, corruption 

mechanism and so on. Figure 2 shows the UPF enabled emulation verification flow. 

UPF LRM defines corruption as “the rules defining the behavior of logic in response to reduction or 

disconnection of power to that logic”. Obviously, applying UPF to any design requires additional functionality to 

model the power supply network, corruption of logics, signal values etc. when insufficient power is applied for normal 
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operation. As well provide additional functionality for propagating, saving and restoring of the system states.  

Corruption  is a situation where the value of signal become unpredictable at power OFF or below predefined threshold 

value.  A corrupted signal is represented by assigning a particular value generally “x” in 4 state and “0” or “1” in 2 

state logic representation.  
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Figure 1 Datacenter-class 3 rack emulator 
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Figure 2 UPF enabled emulation verification flow 

 

It’s important here to reference 4 state and 2 state logic value definitions from System Verilog (SV) LRM.  

The SV ‘logic value sets’ consists of the following four basic values: 

 

❖ 0 represents a logic zero or a false condition 

❖ 1 represents a logic one or a true condition 

❖ x represents an unknown logic value 

❖ z represents a high-impedance state 
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The values 0 and 1 are logical complements of one another. When the z value is present at the input of a gate 

or when it is encountered in an expression, the effect is usually the same as an x value.  SV data types that can have 

unknown (x) and high-impedance (z) values are called 4-state, which can store all four logic values. All bits of 4-state 

vectors can be independently set to one of the four basic values. These are logic, reg, integer, and time. The other 

types do not have unknown values and are called 2-state types, for example, bit and int, which only store 0 or 1 values 

in each bit of a vector. Type conversion between 4 state and 2 state can be automatic from a larger number of bits to a 

smaller number of bits involve truncations of the most significant bits (MSBs). When a 4-state value is automatically 

converted to a 2-state value, any unknown or high-impedance bits shall be converted to zeros. 

Hence its distinctive that a design under tests with UPF, mandate to coordinate situations for unknown or x 

initialization, corruption to ‘x’ and propagation to ‘x’ as well high-impedance or ‘z’ condition. Its’ also true that 

emulators are the best choice for realistic UPF or low power workloads specifically because of very quick turn-

around-time and very large design capacity accommodation - compared to conventional simulators. However, the 

problem is - emulators are developed on custom ASIC with hundreds of processing units on physical boards (racks 

shown in Fig. 1). Essentially, they are hardware on silicon and by default capable of handling only 2 state, i.e. ‘0’ and 

‘1’ logic. This signifies the fact that many low power functional verification features like corruption to unknown, 

initialization to unknown states, propagation of unknown, as well analyze strength resolution will be either impossible 

to implicate on hardware or have to extrapolate ‘0’ or ‘1’ onto ‘x’ (i.e. to device unknowns) by some sort of faking 

mechanism. 

 However, as logic verification engineer, we know that the inherent meaning of initialization to x, corruption 

to x and propagation of x – are not just about faking or mapping ‘0’ or ‘1’ onto ‘x’ for low power implication, 

visualization or facilitate debugging! Its on one hand properly modeling ‘logic’ and ‘reg’ data types (because integer, 

and time may not involve in low power designing) according to SV and UPF LRM and on other hand properly 

handling human perception of logic verification and/or implementation mechanism that introduces the notion of ‘x 

pessimism and x optimism duos’ in emulation hardware.  

Evidently emulation and 4 state logic values are prominent for UPF based low power verification. However, 

there are multitude of complexities and enormous challenges  in realizing 4 state, specifically UPF power related 

implication like corruption mechanism in hardware.  

 

A. Motivation and Contribution of this Paper: 

Our core objective is to accurately define the inherent characteristics of UPF based low power verification 

flow. We systematically identified today’s chip design and verification methodology and approached the limitations of  

existing highly efficient hardware emulation verification platform. In this paper we identified the requirement of 4-

state logic in UPF based emulation flow, identified the complexities, and  establish the orchestration of industry's first 

4 state logic based hardware emulation technology that not only simplifies UPF based design verification but also 

significantly shorten the verification turn-around-time with real world power management workloads. We hope this 

paper, will serve as reference point for innovative research and realization of highly efficient hardware emulation 

based low power verification platform.   

 

B. Organization of this Paper: 

This paper is organized in the following structure. Section I introduces the key concepts and relevant UPF 

verification concepts and flows. Section II explains fundamentals and complexities of UPF verification on emulation. 

Section III provides further insight of 4-state logic and orchestration in emulation. The final sections IV draws the 

conclusion and points further/future research prospective. The references are shown at the end. 

 

 

II FUNDAMENTALS AND COMPLEXITIES OF UPF VERIFICATION 
 In section I, we explained how UPF verification concepts and 4-state logic are corelated. We also understand 

that the inherent meaning of initialization to x, corruption to x and propagation of x - lies in the fact that how SV 

‘logic’ and ‘reg’ data types are modelled in verification tools and how notion of ‘x pessimism and x optimism duos’ 

plays vital roles in realizing them in emulation hardware.  

 Let’s step back and understand what ‘x pessimism and x optimism duos are’? First, we have to look for the 

sources of x’s in a design. The primary sources of x in UPF, its power down phenomena on logic, reg etc. and in UPF 

and non-UPF both, explicit assignment to x, uninitialized state elements (‘regs with/without reset’) etc. The secondary 

sources could be incomplete SV assignments, like missing default statement in case block, bus conflicts, out of range 

bit/part select, indexes in MDA, arithmetic exceptions (divide by zero, modulus 0) etc.  Some of these x interpreted in 

verification tool may differ in actual design implemented in hardware.  
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The notion of x optimism comes from the fact when verification tool generates ‘0’ or ‘1’ signal values when 

they are actually unknown (‘x’). Similarly pessimism comes when tools produces ‘x’, whereas they should be known 

(‘0’ or ‘1’). These verification tools results may be far different when the RTL design is actually implemented 

(synthesized) in gate-level netlists. Which is widely known as simulation synthesis mismatch where x is don’t care in 

synthesis but in simulation, x is logic value distinct from 0, 1 and z.  

 

A. UPF Corruption Model: 

In regular HDL based functional verification (simulation) world, its presumed that all logic are powered on at 

the beginning of simulation and remains powered on throughout the verification cycles. However, the SoC designed 

today are far more complicated by adopting multi-voltage, power gating, state-data retention, power standby even 

dynamic voltage scaling techniques on same chip by virtue of UPF as shown in Table 1. 

 

Table 1 Complicated Power Management Schemes on a Chip 
 

Multi-voltage Power Gating Power-gating with Retention Low-power Standby DVS/AVS 

Blocks of chip can 

run on different 

supply voltages e.g. 

1.5V, 1.0V, 0.8V etc. 

Some block of chip 

is OFF, while others 

running ON with 

different supplies 

The OFF block require to 

retain state and data during 

shut-down and restore them 

up on powered ON 

Some blocks runs at 

possible low voltage 

to hold state and data, 

while rest are OFF 

Dynamic voltage 

and adaptive voltage 

scaling based on  

performance 

demand 

 

These power management features definitely alter and/or instruments the actual design with additional power 

artifacts – like confinement of different design blocks on to different voltage region (power domain), provide different 

supply network/sources, power switching and control network, power management cells like isolation or retention, 

power down corruption semantics and so on. Fortunately todays’ low power enabled verification tools (simulators and 

emulators) allows design instrumentation with UPF artifacts to mimic accurate low power implementation like 

behavior at functional verification level. Among all, corruption modelling imposes a complete unprecedented  

requirements from HDL logic values as well impacts on design instrumentation.  

In low power, corruption refers to the situation where the value of a signal becomes unpredictable when the 

power supply for the element driving that signal is disconnected, changes to OFF, or drops below some threshold. 

Corruption of a signal is represented by assigning a particular value to the signal (it could be x or 0 or 1 (but probably 

not z/floating). The corruption value depends upon the type of the signal and rare cases may also be user-definable.  

It is typically applied to signal drivers and propagates to all sinks of that signal that are not isolated form their 

sources. When a design instance is turned off, every sequential element within the power down instance and every 

signal driven from within the power down instance must be corrupted. As long as the power remains off, no additional 

activity takes place within the powered down instance—all processes within the powered down instance become 

inactive, regardless of their original sensitivity list. Events that were scheduled before the power was turned off and 

whose target is inside a powered down instance have no effect. 

When a design instance is turned on (restored), corruption of sequential elements and signals within the 

powered down element ends. Continuous assignments once again become sensitive to changes to their right-hand side 

expressions, and other combinational processes (such as an always_comb block in SystemVerilog) resume their 

normal sensitivity list operation. All continuous assignments and other combinational processes are evaluated at 

power up to ensure that constant values and current input values are properly propagated. Sequential elements are re-

evaluated on the next clock cycle after power up. 

 

B. What could be the corruption values: 

Signals are corrupted by assigning them to their default initial value (such as x for 4-state types). The SV 

LRM denotes that 4 state and 2 state data types of default initial value are x and 0 respectively. So any design that 

have 2 state and 4 state data types. 

 

❖ 2-state signals (e.g. bit) continue to operate as 2-state: initialize to 0 

❖ 4-state signals (e.g. logic, reg) continues to operate in 4-state: initialize to x 

 

The question may arise for interoperation between 2 state and 4 state data types. The answer can be found in 

SV LRM as noted in section I, that type conversion between 4 state and 2 state can be automatic from a larger number 

of bits to a smaller number of bits involve truncations of the most significant bits (MSBs). When a 4-state value is 

automatically converted to a 2-state value, any unknown ‘x’ or high-impedance bits shall be converted to zero ‘0’. 
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During low power verification, if the driver of a net is powered down, then the output of the driver is 

corrupted, and this corrupted value propagates to all sinks of that net. To understand how corruption occurs in a given 

design, it is necessary to recognize the elements of the design that represent or contain drivers. In an RTL code, any 

statements involving arithmetic or logical operations or conditional execution are interpreted as representing drivers 

and cause corruption when powered down. Unconditional assignments and Verilog buf primitives do not represent 

drivers and therefore do not cause corruption when powered down, but they may propagate corrupted signals from 

upstream drivers. 

 

C. Simulation Emulation Congruency  

It is now distinctive that corruption modeling along with other power implications specifically for accurately 

mimicking low power behavior at power up-down-cycles where, for example, the inputs and sequential logic in a 

power down domain needs to be corrupted onto unknown value (i.e. x), or propagate x from OFF to ON domain, or 

analyze x-state initialization for all sequential elements after power up. Even for combinational logic within power 

down domain needs to evaluate to x.  

Conventionally corruption modeling is based on 4 state logic and easily accommodate in event driven low 

power simulation environment. However, emulation is devised on actual silicon hardware (custom ASIC) and there is 

no unknown or x state in hardware. This makes low power corruption modeling, as well low power verification (i.e. 

wave based debug) extremely difficult. For example, we utilizes “0  or 1 or random or inverted” mechanism for 2 state 

UPF emulation flow. This may be applicable for both power up and power down state as follow: 

 

❖ Power down states {high | low | random | inverted} 

❖ Power up states {high | low | random | inverted} 

 

Consequently users have to assign and maintain specific power up down  values through out the entire 

verification flow. Arguably it’s possible that the simulator can tag, or debugger can fake a power down corruption 

value to x, but that’s completely for the sake of visualization. Actual x corruption, propagation, initialization or 

evaluation is not possible in 2 state environment. Figure 3 shows the default 2 state corruption and figure 4 shows 4 

state corruption on  debugger waveform window as well figure 5 shows  

 

Corrupt to 0 Random Reset
 

Figure 3. Emulation (2 State) showing 0 during power OFF and random after power ON 

 

Corrupt to X Retains X Reset
 

 
Figure 4. Emulation ( 4 state) showing x during power OFF and design reinitializes as needed after power ON 
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Corrupt to X Retains X Reset
 

 
Figure 5. Simulation (which are generally 4 state) Showing x during power OFF and design reinitializes as needed after 

power ON 

 

From these three figure it’s evident that 4 state emulator corruption model to x is expected and matches the 

corruption behavior of simulators. Hence 4 state corruption model also possesses the advantages of directly compare 

the results between simulation and emulation. Apparently the 4 state emulation and simulation results appears 

congruent in UPF based regular SV ‘reg’ related corruption mechanism. However, actual implementation and/or 

realization of 4 state logic in emulation could have differences - primarily because of x pessimism and optimism and 

subtle difference how RTL level and gate-netlist level design interpret these x pessimism optimism duos. Because 

emulation turns every RTL design to sub gate level design (through special synthesis process), which is more close 

resemblances of the design to its’ actual hardware chip implementation. Hence emulation and simulation will not be 

congruent in the presence of x’s and the reason is further explained below. 

Simulation has 3 modes of operation 

❖ SV LRM mode: Default 

❖ CAT (Compute As Ternary) mode: Optimistic and similar to how hardware propagates x’s 

❖ FOX (Forward Only X) mode: More pessimistic forwarding of x’s 

Emulation will only adopt a similar mechanism of simulation CAT mode because 

❖ Emulation transforms RTL design on to gate-netlist by synthesizing    

❖ In addition, SV LRM strictly applicable for on the RTL designs 

 

 

 

 

 

 

 

 

Note that,  two equivalent RTL implementations will handle x’s differently in LRM simulation mode. However, two 

equivalent RTL that results in the same gates will behave the same in emulation. 

 

D. Experimental Analysis of UPF Based Simulation Emulation Congruency  

Although the previous section provides detail in differences based on x optimism pessimism duos, this 

sections will summarize the UPF based simulation and emulation similarities or dissimilarities based on 4-state logic 

corruption models. Table 2 and Table 3 shows our empirical data for corruption mechanism comprising of simulator, 

2 State and 4 State emulator. 
 

Table 2: Comparative studies for sequential elements and power sequence comparison for Simulator and Emulator 

DESIGN OBJECTS IN POWER 

DOMAIN 

SIMULATOR 2 STATE EMULATOR 4 STATE EMULATOR 

Input port of Power Domain No No No 

Output port of Power Domain Propagate the value Propagate the value Propagate the value 

Latches Corrupts to x Corrupts to 0/1 Corrupts to x 

FF/Regs Corrupts to x Corrupts to 0/1 Corrupts to x 

Memory Corrupts to x Corrupts to 0/1 Memory Wrapper Model to protect Read/Write 

and Contents of Memory from Corruption 
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The experiments in Table 2, considers all design objects are part of a power domain in UPF based 

verification setup as shown in first column. The sequential elements - latches, FFs, and memory instances emulation 2 

state corrupts sequential elements based on special UPF command/options  

 

❖ create_power_domain <domainName> -power_down_states -power_up_states  

 

that allows users to select corruption and normal values at power up and down shown in the 3rd column.  

 

However, the 4 state results for every sequential elements - latches, and FFs, as well every signal elements 

driven from within power down domain will be corrupted to x. There are little difference in corruption mechanism in 

memory between simulation and emulation (Corrupt to x vs Memory Wrapper Model) because memory is modeled, 

treated and  implemented  differently in simulation and emulation. The subsequent section explains detail on UPF 

based corruption mechanism in emulation from modeling and implementation perspective. 

 

Table 3: Comparative studies of logic states and Corruption Semantics for Simulator and Emulator 

 

The experiments in Table 3, considers all design objects are SV “reg” data types, some of them are ordinary 

reg and some of them are special reg with UPF data and state retention capabilities. It also have design objects as 

primary input and outputs (IO) of power domains. The “Power Status” column shows the power ON or OFF or ON to 

OFF or OFF to ON situation. The results clearly shows there is no differences in results between simulation and 4 

state emulation except there is a  x to 0 deposition at time 0 after swap in in row 1. Here deposition only works at 

emulation hence reg remains x at time 0 for simulation until reset is asserted while 0 for 4 state emulation. So its 

obvious congruency works in simulation and emulation 4 state in UPF corruption modeling to represent unknown. 

 

III UPF 4-STATE LOGIC ORCHESTRATION IN EMULATION 

In previous section we noticed that the experiment data in Table 1 shows little difference in corruption 

mechanism in memory between simulation and emulation (Corrupt to x vs Memory Wrapper Model) because memory 

is modeled, treated and  implemented  differently in simulation and emulation. In this section we will identify the 

difference and explain the reason with experiments and analytical data.  

 

A. Impact of Memory and FIFO in UPF Based Emulation  

When a power domain is shut down, the content of all logics including memories and FIFOs are set to ‘x’ 

and it’s comparatively easy to implement in simulation. However, as noted earlier, corruption or x modeling in 

RUN TIME CONSTRAINTS OBSERVATION OUTCOME 

RUN CONDITION POWER 

STATUS 

DESIGN 

OBJECT 

SIMULATOR 2 STATE  EMULATOR 4 STATE  EMULATOR 

time 0 after swap-in (xt0) ON Reg (Not RET) x until reset asserted Default 0 0  

time 0 after swap-in (xt0) OFF Reg (Not RET) x until reset asserted Default 0 x until reset asserted 

Async. Reset is Asserted  ON Reg (Not RET) Initialize to known value Initialize to known value Initialize to known value 

Async. Reset is Deasserted ON Reg (Not RET) No change No change No change 

Power up (any time) OFF->ON Reg (Not RET) remain x Default random remain x 

Power down (any time) ON->OFF Reg (Not RET) Goes to x Default to 0 Goes to x 

ISO Association ON->OFF Power Domain 

IO 

Clamp value Clamp value Clamp value 

OFF->ON Power Domain 

IO 

Propagated value Propagated value Propagated value 

RET Save/Restore ON->OFF Reg (RET) Save last data Save last data Save last data 

OFF->ON Reg (RET) Restore saved data Restore saved data Restore saved data 
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emulation is very costly because it needs to model in hardware. The alternative choice could be  to setting all 

powered-down logics to some random value. While it is relatively easy to set registers to random values  inside a 

powered-down domain, it is quite difficult to set memories and FIFO contents to random values.  

One approach is to load the contents to memories and FIFOs with predefined randomized values, but the load 

operations can be time consuming due to the large number of memories and FIFOs that are in powered-down 

domains. Another approach is to create external logic that is triggered when the power domain is in shutdown mode. 

This external logic will update the memory and FIFO contents at emulation speed. This approach, though re-usable, 

requires additional hardware resources, requires code development for the emulation platform, and also requires 

additional debug to make sure that it functions correctly.  

Ultimately none of these worked as efficient and flowless mechanism for memory and FIFO corruption. In 

UPF 4 state we introduce an automatic memory wrapper in hardware and do not have runtime cost to implement. 

Memory wrappers help model the behavior of design memories correctly, specifically when there are x’s on the 

address or control signals of memories. Without the wrappers, x’s on these control signals of memories are interpreted 

as 0 for non-bit-blasted memories. 

 

 

 
 

Figure 6. Memory corruption results at power down without memory wrapper 

 

 Here in Fig. 6,  the memory was written to 00001111. During power OFF, the “out” shows x however, 

dumping the memory contents shows 0:ff/00001111, which signifies that the contents of memory is not actually 

corrupted. 

 

 
 

Figure 7. Memory corruption results at power down with memory wrapper 

 

Here in Fig. 7,  the memory was written exactly same to 00001111. During power OFF, the “out” shows x as 

well, dumping the memory contents also shows 0:ff/xxxxxxxx, which signifies that the contents of memory is 

properly corrupted. This results matches with simulation and desirable verification mechanism for memory during 

power down. 
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IV CONCLUDING REMARKS 

UPF based low power designs are prevalent today in every chip designed and manufactured today. The 

demands and expectation for 4 state emulation in the low power design verification industry is eternal. This paper 

identifies the complexities & challenges of UPF based low power design verification on emulation platform through 

corruption modeling. In the abstract and extended abstract sections, we approached the rudimentary parts of low 

power verification, we explained the requirements of 4 state logic and primary bottleneck for implication the 4 state 

logic in hardware emulation platform. We also presented empirical data that shows comparative studies of logic states 

and corruption semantics as well sequential elements and power sequence comparison between simulator and 

emulator. These evidently shows the potential and importance of 4 state in hardware emulation platform.  

In our future research plan for “UPF Corruption Model in Low Power Emulation”, we want to extend our 

studies to further understand the capacity and performance impact of corruption in 4 state vs 2 state logics. More 

specifically the influence and contribution of “Corruption Model” in terms of emulation capacity or gate-size during 

build-time and performance in clock-frequency during run-time.  
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