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Ever increasing design complexity across different market segments (Auto, Mobile, Servers, Compute etc.) and 

different architecture types (single die vs chiplets) has put verification effort and strategies used across IP, Subsystem 

and SOC under the spotlight. With challenging TTM (time to market) for products, it is imperative to have a scalable 

verification approach that allows single constrained random stimulus specification to be reused across different 

verification environments and strategies.  

 

In this paper, we will present our experience of using Portable Test and Stimulus Standard (PSS) language to enable 

seamless reusability of constraint random scenarios across platforms, design integration levels and verification 

environments.  

 

I. PROBLEM STATEMENT 

 

A complex design undergoes layered verification from Block/IP level to a bigger Sub-System Level and eventually to 

an SoC. Further complexities get introduced at the SoC level based on whether it is a monolithic SoC vs multi-

die/chiplet based design. Based on the design features, scenario requirement and complexity, different design 

integration level and verification platform strategies are applied to functionally verify the design. Each environment 

and level of design integration offers its strengths in terms of speed, controllability, realism, and practical coverage 

scope. Currently stimulus needs be coded based on the above choices. The language used to formally describe the 

scenario also varies from one environment to the other. IP/Block level verification often use System Verilog language 

and UVM for constrained random verification. Sub systems and SoCs use a mixture of environments and stimulus 

specifications especially when processor IPs are involved. Fast platforms/prototyping platforms mostly rely on C 

based stimulus.This introduces barriers for core to top reuse, adds manual effort needed to tailor the same scenario to 

multiple platforms and environments and reduces the number of functional verification cycles that can be spent on 

bug hunting. 

 

II. PROPOSED SOLUTION 

 

PSS provides the means to model constrained random scenario sequences and use them as an abstraction layer between 

scenario specification and scenario implementation. The PSS model and tool manages attribute level constraints, 

resource and memory management, data flow attributes that can be randomized based on constraints, and executors 

that can be assigned to carry out actions. The solved scenarios are then mapped to executables that are run on either 

real processors or BFMs (UVM agent). The remainder of the paper discusses some of the building blocks using PSS 

to help achieve this goal and a few case studies using this approach.  

 

III. INTRO TO PSS CONSTRUCTS 

Components: Components serve as a mechanism to encapsulate and reuse elements of functionality in a portable 

stimulus model. Typically, a model is broken down into parts that correspond to roles played by different actors 

during test execution. Components often align with certain structural elements of the system and execution 

environment, such as hardware engines, software packages, or testbench agents. 

mailto:kumarsan@qti.qualcomm.com
mailto:yraja@qti.qualcomm.com
mailto:geetagra@qti.qualcomm.com
mailto:kartsugu@qti.qualcomm.com
mailto:aashokv@qti.qualcomm.com
mailto:tbrunans@qti.qualcomm.com


Actions: Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose 

definitions can be reused in many different contexts. Along with their intrinsic properties, actions also encapsulate 

the rules for their interaction with other actions and the ways to combine them in legal scenarios. Atomic actions 

may be composed into higher-level actions, and, ultimately, to top-level test actions, using activities. 

 

Resource objects: Resource objects represent computational resources available in the execution environment that 

may be assigned to actions for the duration of their execution. Resource objects may be locked or shared by actions. 

 

Executors: A PSS generated test calls foreign functions available in the target environment, executes target-language 

code blocks, and performs target operations provided in the core-library. It does so in accordance with the user-

defined realization of actions and of flow/resource objects specified in the form of target exec blocks— body, 

run_start, and run_end—and functions called from them. Foreign function calls, target-language code blocks, and 

built-in target operations, all need to be performed under a certain agent of execution available to the test in the 

runtime environment, or in short, an executor. 

 

Traits: The PSS core library provides means to represent executors in the PSS description and to assign scenario 

entities to them. Executors are characterized by user-defined properties called traits, which serve to control the 

assignment of actions/objects to them. For example, the cluster of a CPU core could be represented as a trait 

attribute. Related executors are grouped together so that scenario entities can be assigned to a random instance out of 

a group. The selection of executors satisfies constraints on their trait attributes if any are specified. 

 

 

IV. PSS LAYERING OVER UVM OR VANILLA SYSTEM VERILOG 

Below is a technique we have employed using “executors” in PSS to differentiate, assign and customize functional 

code based on the appropriate execution entity in the DUT/TB. 

 

 
Figure 1: PSS Executor mapping example 

 

In the above example we show one of the abstraction techniques that PSS provides and the one we predominantly use 

in this paper. The executor component in PSS represents either an embedded physical core in the design or it could 

also be a TB component such as a UVM agent that is capable of driving transactions to the DUT or any interface on 

the DUT independently. Different embedded core types or UVM agent types are represented as different executor 

types in our PSS model. Multiple cores or agents of the same type are represented as different instances. All the 

executor component types are however templatized using the same trait struct. This allows all the executor component 

instances irrespective of the type to be added to a single executor_group. The action consumes an executor resource 

using a lock. The lock ensures that only one action can consume a particular resource instance from the pool at a given 

point in the execution. The number of resources in the pool of executor resources are the same as the number of 

executor component instances in the executor_group. The executor resource xtor_r is templatized using the same trait 

struct that was used for the executor component types. Based on the constraints on the trait attributes on the executor 



resource a corresponding executor component instance is allocated. We have multiple traits in trait struct and a 

combination of 3 traits in our system can be used to uniquely allocate a particular executor instance if needed. 

Each executor type can implement the same functions differently. In the example in Figure 1 write_addr() is a function 

that is implemented differently for each executor type. The action always calls write_addr() with the solved values of 

address and data but based on the executor the corresponding implementation is used. We use the PSS native execs 

for our exec body, and this allows us to use the same imported function call but mapping to different implementations 

based on the executor chosen. 

Figure 2: Code snippet for executor inheritance and registration 

 

V. FAST INITIALIZATION USING PSS LAYER 

Scenarios might require agents to temporarily take control of the interface and drive transactions and then return 

control back to the RTL. This might be needed to create very synthetic corner case scenarios or even run initialization 

sequences of IPs using agents that are attached closer to the block than using LD/ST instructions of a processor. In 

this paper we are trying to speed up initialization time by using light weight UVM agents to front door initialize the 

system in a large design. This could be achieved backdoor as well if the initialization flow allows it. This concept by 

itself is not new at all but following are some of the challenges that we have been able to resolve using a PSS layer far 

more seamlessly than traditional methods. 

1. All initializations cannot be done at time 0 or at the same fixed time in the simulation. 

2. Some of the initializations have sequencing dependencies. 

3. Initialization parameters and sequences often depend on the randomized scenario to be run. 

By creating a scenario where the initialization is also represented by PSS actions, we were able to offload the execution 

to the corresponding uvm agents. Using scheduling constraints available in PSS we could specify which initialization 

actions could run in “sequence” and which ones could run in “parallel”. We could also select the agents that would be 

running these transactions based on the “xtor” assigned to the action. In a simulation environment or a fast platform 

that supports such agents this could be a uvm_agent while in platforms where such an agent is NOT available one 

could just change the xtor to pick an executor of embedded core type. 

To use an SV Agent to temporarily take control of the interface that it is driving we must introduce tristate buffers in 

the TB in order shift control between agent and the CPU path. Control of the tri-state buffers to pick the right initiator 

is handled by the PSS scenario executors and scheduling constraints. In the example below when an action is assigned 

an executor that maps to an AHB agent, its corresponding task sets agent_active to 1 at the start of the task and sets it 

back to 0 before return. Here the AHB agent used is a standard off the shelf UVM VIP. 

struct xtor_trait_s : executor_trait_s {} 

 

resource xtor_r : executor_claim_s<xtor_trait_s> {}; 

 

component xtor_c : executor_c<xtor_trait_s>{}; 

component emb_xtor_c : xtor_c{}; 

component uvm_xtor_c : xtor_c {}; 

component cpu_core_c : emb_xtor_c {}; 

component cpu_chi_agent_c : uvm_xtor_c {}; 

 

component pss_top { 

cpu_core_c cpu0; 

cpu_chi_agent_c chi0; 

 

exec init_down { 

xtor_group.add_executor(cpu0); 

xtor_group.add_executor(chi0); 

}; 

}; 



 
assign (supply1,supply0)  `NOC_HIER.noc_hwdata = agent_active ? agent_if.hwdata : 'bz; 

 

 
Figure 3: Tristate logic for Agent and RTL. 

 

The timing of driving the agent_active signal is controlled by the sequencing of the actions. This also ensures that 

the control is taken in a safe point in the simulation. Also, the scheduling constraints can be used to ensure no 

conflicting action is executed that may affect or be affected by the agent temporarily taking control of the bus. The 

reason for implementing such a flow is to allow for scenarios where the first-time initialization can be done using an 

agent while any further dynamic re-initialization during the scenario could be done so by some embedded core 

reactively. 

 

 

 

 

 

enum mode_e {SLOW, FAST}; 

action my_scenario { 

    rand mode_e mode;  

}; 

 

action test1 { 

    initialization initialization_h; 

    my_scenario my_scenario_h; 

     

    constraint my_scenario_h.mode == 

FAST -> 

initialization_h.top_config.clk_speed 

==TURBO; 

 

    activity{ 

        sequence { 

            initialization_h; 

            my_scenario_h; 

        }; 

       }; 

}; 

Figure 2: Code Snippet for initialization sequence and subsequent use in a test along with a scenario. 

enum clk_speed_e {TURBO,NORMAL,LOW}; 

extend component pss_top{ 

   action base_action { lock xtor_r xtor;}; 

   struct init_s {rand clk_speed_e clk_speed;}; 

 

   action config_IP0 : base_action {rand init_s s;}; 

   action config_IP1 : base_action {rand init_s s;}; 

   action config_IP2 : base_action {rand init_s s;}; 

 

   action initialization { 

       rand init_s top_config; 

       config_IP0 config_IP0_h; 

       config_IP1 config_IP1_h; 

       config_IP2 config_IP2_h; 

 

       constraint config_IP0_h.xtor.tag == agent0; 

       constraint config_IP1_h.xtor.tag == agent1; 

       constraint config_IP_h.xtor.tag == agent2; 

       constraint forall (s : init_s){ 

          s.clk_speed == top_config.clk_speed; 

       }; 

 

       activity{ 

           sequence{ 

               config_IP1_h; 

               parallel{ 

                   config_IP2_h; 

                   config_IP0_h; 

               }; 

           }; 

       }; 

   }; 

}; 



 

 

 

 

 

 

 

 

 

 

VI. SOC LEVEL SCENARIO CASE STUDIES 

 

Following are some interesting real world case studies performed at SOC Verification using the techniques discussed 

in the previous section 

 

Case 1: To accelerate bringing up resources on a SoC, multiple SV agents can run initialization sequences faster and 

parallelly. An AHB agent takes control on the bus using the aforementioned tristate logic to perform clock and chip 

resources bring up as explained in Section 5. 

 

Case 2: For Performance verification of interconnects, we run workloads on a graphics processor. But this does not 

require the actual graphics processor RTL. By using a trace replay sequence scheduled on GPU SV agent (this is a 

BFM hijacking the output interface of the processor) as an executor we have a lightweight method of mimicking the 

workload on the interconnect. 

 

In such scenarios where interconnects and memories are the primary focus of verification, we remove dependency on 

the actual RTL of the initiator to be available and configured during simulation. More importantly, this form of 

stimulus enables full control on the traffic pattern including bus attributes such as address, data length, memory 

attribute, opcode, priority level, etc., and even sequence timing parameters like transaction delays. PSS allows 

constraining the above attributes during scenario creation for generating custom synthetic traffic or directly reuse trace 

files generated by other teams to mimic specific use cases to achieve comprehensive performance coverage of the SoC 

fabric and memory. Moreover, with the scheduling capabilities of PSS, the ability to create concurrent traffic scenarios 

utilizing multiple UVM initiators and embedded processors becomes effortless while maintaining controllability and 

randomness on the stimulus. This hybrid testbench approach for verification is immensely powerful by tailoring 

scenarios which target specific issues or introduce randomness to aid in bug hunting.. 

function void config_function(init_s s, xtor_trait_s xtor_trait); 

import target C function config_function; 

 

extend action config_IP0 { 

    exec body { 

        config_function(s,xtor.trait);  

    }; 

}; 

Figure 4 : Agent control synchronization 

extern void sv_config_function(init_s s, xtor_trait_s xtor_trait); 

extern void sv_set_agent_active(xtor_trait_s trait); 

extern void sv_set_agent_inactive(xtor_trait_s trait); 

 

void config_function(init_s s, xtor_trait_s xtor_trait){ 

    //saveCurrentScope 

    //setNewScope 

    sv_set_agent_active(xtor_trait); 

    sv_config_function(s,xtor_trait); 

    sv_set_agent_inactive(xtor_trait); 

    //setOriginalScope 

}; 



 
Figure 5: GPU SV agent controlled using different stimulus formats from PSS with the same underlying testbench through a DPI-C layer. 

In the above example read_traffic action represents an example where the PSS code controls the transactions on the 

fine grain level while the trace_replay action helps randomize which pre-generated trace file that contains a transaction 

queue. 

 

Case 3: I/O Coherency verification requires both the realism of actual CPUs with caches that need to be snooped and 

a I/O coherent master like a DSP pumping in coherent traffic. The DSP can be replaced with an AXI/Custom Bus 

agent to have better control on the low-level attributes driven on the bus while performing shared data operation with 

the CPU. 

 

Assuming a scenario of data sharing between CPU (fully coherent) and an I/O coherent initiator where we replace I/O 

initiator with an agent. A typical I/O initiator interface would have address fields, data fields, control fields like opcode 

and memory transaction type (various flavors of cache-ability, write allocate and write update policies). A bug can be 

present for a very specific combination of these various fields. Working on embedded version of the I/O initiator might 

require programming internal registers for the initiator to drive a certain memory transaction type. There might be 

some specific instructions that need to be executed by the initiator in order to generate a given opcode. For example, 

CHI opcode WriteUniquePtl can be generated when the initiator executes a specific type of store instruction. All these 

limitations can be overcome if we can have control directly over the interface. 

 

 

In the snippet shown in Fig 6, the retrieval of the AHB sequencer handle is done also using the executor_s struct that 

is passed to the task from the PSS code. Each agent instance is represented as a unique executor instance in the model 

and hence the exec struct is populated using call to executor() function in PSS which returns the executor instance 

assigned to the current action and hence the corresponding traits of that instance. The trait info that is part of the exec 

struct helps identify a unique agent instance and hence retrieve the corresponding sequencer handle. 

 

 



Putting it all together is a concurrency scenario shown below at the SoC level where CPU and DSP are running a false 

data sharing scenario while GPU is pumping in traffic to fabric while running a workload. All of them are targeting a 

common memory. The same technique can be used for running a similar scenario on the interconnect only verification 

level where even the CPU is also replaced by an agent. When running on a Fast/Accelerated platform one could set 

the executors as real processors in place of the agents. In all cases the stimulus specification and scenario structure 

can remain the same at the PSS level. Each agent or processor is represented in the PSS model as a unique executor 

instance. The PSS model and solver also randomizes the memory buffers to be used in the scenario using address 

spaces and address claims as described in the PSS core library in the LRM. The AMBA agents listed below are off 

the shelf agents while the custom ones are used for interfaces that are proprietary.  

Populate transaction struct and executor info 
 

pss_write(input executor_s exec, 

input transaction_s trans) 

Receive the struct 
information and call 

DPI-C function to 

pass to SV side. 

Process the executor struct to 
identify protocol type and start a 

sequence of that type. 

 
The sequence will process the 

transaction struct as needed. 

pss_write(input executor_s exec, 

input transaction_s trans) 

 

executor_s can have information on the protocol type 

 

Like a sequence_item class in uvm, we can define all 
the traffic fields in the transaction_s struct that we wish 

to control on the interface. It can look something like: 

 
struct transaction_s {  

 bit[31:0] addr, 

 bit[255:0] data, 

 bit[5:0]opcode, 

 bit[2:0] length, 

 bit[2:0] cacheability , 

 bit write_allocate_policy

  

}; 

 
The various fields of this struct can be set during test 
scenario generation. 
 

transaction_s traffic_info; 

traffic_info.opcode=“WriteUniquePtl”; 

traffic_info.cacheability=“Write_Thro

ugh_No_Allocate”; 

 

This struct would then be passed as it is on the c side. 

DPI-C  

call  

task sv_write_task(executor_s exec,transaction_s 

traffic); 

    

      case(exec.protocol) 

 AHB: ahb_write(traffic); 

       AXI: axi_write(traffic); 

       CHI: chi_write(traffic); 

      endcase 

endtask 

 

//sample function 

task ahb_write(transaction_s traffic); 

 

      //Step 1: retrieve ahb sequencer handle 

      //Step 2. Insantiate sequence and use 

transaction struct to constraint transaction items  

 

  ahb_write_sequence my_seq_h; 

 if(!my_seq_h.randomize() with { //populate 

with traffic struct 

          my_seq_h.addr == traffic.addr; 

         my_seq_h.data == traffic.data;  

         my_seq_h.opcode == traffic.opcode; 

} 

      //Step 3: start sequence on sequencer 

 my_seq_h.start(my_sequencer_h); 

 

endtask 

 

Generate test 

Figure 7: PSS to UVM connection layer 

Figure 6: PSS code to describe the above scenario. 

  action initialization { 

        clk_ctl_c::config_clk config_clk_h; 
        constraint config_clk_h.xtor.trait.xtor_type == uvm; 

        activity { 

            config_clk_h; 
            }; 

        }; 

  action write_read_seq { 
        processor_c::processorWrite processorWrite_h; 

        processor_c::processorRead processorRead_h; 

        rand int loop_count; 
        activity { 

sequence { 

               replicate (loop_count) { 
                  processorWrite_h; 

                  processorRead_h; 

                }; 

            }; 

        }; 

    }; 

action scenario { 
    initialization init_h; 

    write_read_seq wr_seq_h; 

    trace_replay trace_replay_h; 
    traffic traffic_h; 

    constraint wr_seq_h.xtor.tag == cpu; 

    constraint trace_replay_h.xtor.tag == sv_gpu; 
    constraint traffic_h.xtor.tag == sv_dsp; 

 

    activity { 
        sequence { 

            init_h; 

            parallel { 
                wr_seq_h; 

   trace_replay_h; 

   traffic_h; 
                }; 

            }; 

        }; 

    }; 



 

The following snippet shows the solution graph of the solved scenario action. As one can see the clock_config 

initialization action is scheduled on the sv_cpu1 which represents a uvm_agent and in our usecase maps to an AHB 

VIP. The gpu, dsp and cpu are running concurrent traffic to memory representing a false sharing coherency test. The 

loop count is set to 2 for illustration purposes but can be set to a much higher count based on the platform.  

  
Figure 8: Scenario Solution graph showing concurrent executors. 

  

Note that running the same scenario on a platform that does not support a UVM agent would simply mean changing 

the xtor_type constraint to be emb. This would automatically generate code that only uses embedded cores and hence 

could easily be run on fast platforms that may only support native processor execution. 

 

VII. RESULTS 

 

With these approaches to verification, we can scale a given PSS scenario specification across different functional 

verification strategies - “One Stimulus to rule them All”. Following are some of the key benefits and results: 

(i) Quick and easy scenario creation 

a. Enabling easy plug-play playground without worrying about synchronization or data flow between 

processors, between agents or between processors and agents as well.  

(ii)  Gen-time Functional coverage metrics 

a. Scenario is solved and graph generated prior to simulation thus enabling coverage to evaluate 

scenarios even before running them.  

(iii) Fast initialization 

a. We observed improved runtimes (~30% on average) improving the reducing the init-to-test ratio. 

(iv) Improved verification Coverage 

a. With a mix of controllability using agents and realism of actual processor RTL corner case bug 

hunting is easier 
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