
A UVM SystemVerilog Testbench
for Directed and Random Testing of

an AMS Low-Dropout Voltage Regulator

Charles Dančak 1

Betasoft Consulting, Inc.
charles@betasoft.org

Abstract-A UVM-compliant testbench is developed to apply benchtop-style directed tests to an on-chip low-dropout
CMOS voltage regulator. Eight directed tests verify the regulator's DC and AC response to line and load fluctuations, its
programmed operating modes, power-supply rejection, etc. To enhance the effectiveness of the low-level directed tests
in reaching unexpected corner cases, we apply high-level UVM randomization techniques to generate a randsequence of
transient tests. Sub-cycle timing for stimulus and response is managed by means of the uvm_event_pool. Our goal is to
present the UVM testbench mechanisms and coding techniques that proved most effective in verifying the circuit-level
functionality of analog/mixed-signal blocks—a topic outside the usual scope of chip-level UVM testbench development.

I. INTRODUCTION

Universal Verification Methodology (UVM) has dramatically advanced the state of the art in verifying complex
system-on-chip (SOC) designs. Its innovations have raised the level of abstraction at which verification is done. Yet,
for on-chip analog/mixed-signal (AMS) IP blocks, directed testing at a circuit level [1] is still a must. AMS IP blocks
on a chip have to meet strict analog requirements such as gain, bandwidth, linearity, noise immunity, and overshoot.

Even the lowest-level directed tests, however can be more effective when enhanced with the constrained random
verification (CRV) capabilities of UVM. In this paper, we develop a UVM-compliant testbench to apply CRV-driven
directed tests to an AMS circuit often found on SOCs. Our design-under-test (DUT) is a programmable 45-nm CMOS
low-dropout (LDO) voltage regulator. A simplified block diagram of the transistor-level regulator appears in Fig. 1.

Figure 1. CMOS LDO Voltage Regulator Block Diagram

Our testbench includes eight directed tests. In addition, it can apply a randsequence-based test suite, alternating
randomly between line-transient and load-transient tests—further stressing the DUT. During this random sequencing,
circuit conditions for each directed test are carried over to the next. Imposing such reactive line and load conditions
can better approximate the real-world demands faced by an on-chip regulator—and reach unanticipated corner cases.
This random sequence of reactive tests detected more numerous, and more serious, failures than did individual tests.

1 C. Dančak is also a SystemVerilog instructor with UC San Diego, Dept. of Extended Studies, La Jolla CA 92093, USA.

R1

R0

R2

VDD18
VOUT

Rload

Cc

VREF
(0.6 V)

pMOS W/L = 32μm/180nm

Iload

Low-Dropout
Voltage Regulator

(45-nm CMOS)

CLK

R1
(5.5kΩ)

R2
(5.5kΩ)

B

WRB

Mode Registers

+
−

− +

TRIM

R E

The analog input to the DUT in Fig. 1. is VDD18, an unregulated supply voltage with a nominal value of 1.8 V.
This line input is fed into a large pMOS pass transistor, whose conductivity is controlled by a continuous-time linear
feedback loop. Regulated output voltage VOUT is typically 1.25 V. The load current can be adjusted through Rload.

 Our testbench must verify the LDO's ability to regulate VOUT under fluctuating conditions of line voltage and load
current. And it must exercise all the LDO's program modes, configured by writing control bits into registers R0–R2.
These modes are: normal VOUT regulation; trimming of VOUT level; retention during power-down; or bypassing
the entire regulator for automated testing. Asserting WRB enables writing to addressed registers on rising CLK edges.

We met these verification goals with the AMS directed tests in Fig. 2a. Each test is implemented as a UVM class
derived from uvm_test. It launches a single sequence during run_phase, which generates and randomizes a data
packet. Test LOAD_REGLN, for example, randomizes the real variable VDD18_rnd, constraining it to a valid input
range. To run any test, its class name is specified on the simulator command line, with an option like the following:

+UVM_TESTNAME=TEST_LOAD_REGLN

Our testbench uses mostly standard UVM components. Nevertheless, components like the driver and monitor must
be made aware of what test is currently running. We defined the enumerated test type in Fig. 2b to specify the active
test anywhere in testbench code. Prefixing this type with TEST_ yields the class name for that particular test.

RAND_TRANS, the last test in Fig. 2, is the randsequence-based test suite that randomly alternates between the
LINE_TRANS and LOAD_TRANS tests. This sequence of transient tests models abrupt changes in the line voltage and
load current, due perhaps to on-chip power-management phases or memory-usage spikes. For each directed test in
the sequence, we sample and hold key circuit conditions, carrying them over as initial conditions for the next test.

II. UVM TESTBENCH ORGANIZATION

Fig. 3 is a block diagram of our testbench. Class objects appear as rounded rectangles, and modules as ordinary
rectangles. Interface buses DIF and MIF are hierarchical. Analog bus signals like A.VOUT or A.ILOAD (purple wiring)
are thus listed separately from digital bus signals like D.TEST_TYPE or D.WRB (green wiring), enhancing readability.

The voltage-regulator DUT is instantiated in a submodule named FIXTURE. This submodule also encapsulates all
the XMODEL analog resources—DC and AC voltage sources, analog selectors and adders, a variable load resistor,
and the various measurement primitives [2]—needed to drive or monitor the DUT's voltages and currents over time.

The transistor-level DUT was designed in Cadence Virtuoso. From the DUT schematic, a SystemVerilog netlist of
XMODEL primitives was extracted and characterized to SPICE accuracy, using the MODELZEN utility discussed in
previous work [3]. This enabled us to simulate the AMS DUT itself, as well as the analog instrumentation around it,
in pure SystemVerilog. This flow facilitates the rapid development of the benchtop-style AMS tests listed in Fig. 2a.

An Accellera UVM-AMS standard is currently under development to address the challenges of incorporating AMS
verification into a UVM framework. The approach presented here, while in line with the emerging standard, does not
require any of its mixed-signal-aware extensions, and is already in full use.

As Fig. 3 indicates, during each directed test a driver applies stimulus to the DUT inputs over interface bus DIF. A
monitor captures the output response over bus MIF. After each test, the driver sends a single data packet DRV_PKT
over a TLM path on up to the scoreboard SCB. Likewise, the monitor sends a single data packet MON_PKT. Based on
the arriving stimulus and response data, SCB compares actual test results with the regulator's design specifications.

During report_phase, individual test results are printed. In the case of the RAND_TRANS test suite, the transcript
prints a scorecard array SCD, summarizing at a glance the pass-fail results for all the individual tests that were run.

III. ISOLATING CLASS HIERARCHY FROM TEST DETAILS

A major challenge in this work was to keep the high-level UVM class components independent of circuit-level test
details. We wanted to develop a diverse set of analog/mixed-signal directed tests for the voltage regulator, often
requiring iterations, without the need of tweaking existing UVM architecture to accommodate low-level test details.

By adopting the coding strategies below, we met this challenge. We were able to reuse most of the UVM classes
and TLM pathways from previous work [4]. We implemented eight benchtop-style tests that can all be executed on
the same UVM testbench, and are easily modified or extended—just like setting up wave generators, voltmeters, and
other instruments on a lab benchtop. Three effective isolation techniques are outlined in the subsections below.

 /* ENUMERATED TEST_TYPE
 * Declared in package TYPES.
 */
 typedef
 enum bit [3:0] {
 //-Test Type- -Code-
 IDLE_SUITE = 4'h0, //Default.
 LINE_REGLN = 4'h1,
 LOAD_REGLN = 4'h2,
 PSRR_RATIO = 4'h3,
 IDDQ_LEVEL = 4'h4,
 LINE_TRANS = 4'h5,
 LOAD_TRANS = 4'h6,
 TRIM_LEVEL = 4'h7,
 CTRL_MODES = 4'h8,
 RAND_TRANS = 4'h9
 } TEST_TYPE_t;

Figure 2a. Directed Tests for Voltage Regulator 2b. Packaged Test Types

A. Encapsulate DUT and Analog Resources in a Fixture

We found it best to encapsulate all analog/mixed-signal functionality inside of the FIXTURE submodule in Fig. 3.
This includes the DUT, modeled in SystemVerilog as a circuit of XMODEL primitives like pmosfet, resistor and
capacitor, and instrumentation primitives like sin_gen or meas_pp. It can also include analog assertion code, as
demonstrated in a prior work [3]. The FIXTURE submodule interacts with higher-level testbench components only
by exchanging signals over virtual interface buses VDIF and VMIF, and by awaiting global events that synchronize
the timing of stimulus and response. The UVM hierarchy is thus effectively decoupled from low-level test details.

Figure 3. UVM Testbench Organization

+
−

− +

FIXTURE

ENV

AGNTD

BASE_DRV

SQR

AGNTM

BASE_MON

SCB

SEQ[1–7]

TEST_SUITE

MIFDIF
VDIF VMIF

Agent, Monitor

Agent, Driver

DUT

TLM Path

Factory DriverFactory DriverTest-Specific
Factory Drivers

SCORE_LINE_REGLN();
SCORE_LOAD_REGLN();
SCORE_PSRR_RATIO();
SCORE_IDDQ_LEVEL();

uvm_event E[0:3]

Global
Event
Pool

VOUT_min
VOUT_max
IDDQ

TEST_TYPE
VDD18_rnd

MON_PKT

DRV_PKT

SCD

Scorecard Array

Factory DriverTest-Specific
Factory Monitors

AMS LDO Voltage Regulator Tests

Code Analog Quantity Measured

4'h0 IDLE_SUITE Default enumerated test type. — —

4'h1 LINE_REGLN 4

4'h2 LOAD_REGLN 4

4'h3 PSRR_RATIO Rejection of 10-kHz input hum. 4

4'h4 IDDQ_LEVEL IDDQ 2

4'h5 LINE_TRANS 2

4'h6 LOAD_TRANS 2

4'h7 TRIM_LEVEL 17

4'h8 CTRL_MODES VOUT 7

4'h9 RAND_TRANS VOUT TRIALS

Test Type
(TEST_TYPE_t)

Result Compared
Against Specs

Length
(Cycles)

ΔVOUT, as VDD18 varies from
min to max over specified range.

ΔVOUT, as ILOAD varies from
max to min over specified range.

Quiescent IDDQ for bleeder load.

VOUT overshoot, undershoot. Vover, Vunder

VOUT undershoot, overshoot. Vunder, Vover

Trimmed VOUT levels [n = 1–16]. VOUTn

VOUT for ENA, RET, BYP modes.

Run LINE_TRANS, LOAD_TRANS
tests in random sequence, with one
test's conditions affecting the next.

ΔVOUT
ΔVDD 18

÷1.25

ΔVOUT
Δ ILOAD

÷1.25

20 log
VOUT AC
VDD18AC

B. Build Factory-Replacement Drivers and Monitors

We relied heavily on the factory replacement of drivers and monitors to keep UVM class components decoupled
from testing details. The base driver and monitor in Fig. 3 are independent of any test. During build_phase, they
are replaced by test-specific derived versions. Code Sample 1 shows a typical derived driver. As highlighted in red,
it has just one test-dependent line of code—a call to a test-specific command task named APPLY_LINE_REGLN_tf().

C. Call Test-Specific Command Tasks

As in Code Sample 1, the factory driver for LINE_REGLN calls the test-specific task APPLY_LINE_REGLN_tf()
during run_phase. This command task contains all the test-specific details of applying minimum and maximum
line voltages to DUT input VDD18. Its counterpart, monitor command task CHECK_LINE_REGLN_tf(), contains all
the details of monitoring the VMIF bus, and capturing the DUT's output voltage VOUT after each line-input change.

Sample 2 shows the key code for APPLY_LINE_REGLN_tf(). First, a test type is established. Cycle by cycle, the
task applies minimum and maximum line-input levels to the DUT, supplied by dc_gen sources in the fixture. They
are multiplexed to the DUT input simply by driving selector values like 3'd2 onto the bus signal VDIF.D.SEL_VDD.

 class LINE_REGLN_DRIVER extends BASE_DRIVER;
 `uvm_component_utils(LINE_REGLN_DRIVER)

 task run_phase(uvm_phase phase);
 @(negedge VDIF.PON_RST); //Wait till after reset pulse.
 @(posedge VDIF.TEST_CLK); //Begin test on cycle boundary.

 seq_item_port.get_next_item(DRV_PKT); //Get one packet.

 //Call test-specific command task:
 APPLY_LINE_REGLN_tf(DRV_PKT, VDIF);

 seq_item_port.item_done();
 APD0.write(DRV_PKT); //Forward packet to SCB via TLM.

 endtask: run_phase

endclass: LINE_REGLN_DRIVER

Code Sample 1. Factory Driver for LINE_REGLN Test

We coordinated the timing of stimulus and response with UVM events, as detailed in Section IV. The command
TRIGGER_EVENT() called in Sample 2 encapsulates the event-based timing details, as shown in the rectangular inset.
All events are triggered by a factory driver, and then detected by a factory monitor or by code blocks in the fixture.

This approach leads to a straightforward chain of command. First, the named test is specified from the simulator
command line, as in Section I. A factory driver and monitor are built. In turn, they call the command tasks which
apply test-specific stimulus and measure the DUT response. These factory components then forward the data packets
DRV_PKT and MON_PKT up to the scoreboard. Aware of the TEST_TYPE, the scoreboard then evaluates test results.

Run named test → Build test-specific driver/monitor → Call command tasks → Apply stimulus; check response.

Our approach could readily be scaled up to a complex on-chip subsystem with a wide variety of AMS IP blocks.
Using the command-task approach in subsection C, an analog verification engineer with minimal UVM expertise
could conceivably write a detailed, circuit-specific directed test for an analog filter, equalizer, transceiver, ADC,
DAC, or other AMS block, ready to be incorporated into a standard SOC-level UVM testbench.

IV. SYNCHRONIZING STIMULUS AND RESPONSE

Another challenge in this work was coordinating stimulus and response timing across widely-separated testbench
components. Adding to the difficulty were the sub-cycle timing aspects of transient tests like LOAD_TRANS—with its
abrupt changes in load current. We sought a robust yet intuitive scheme for writing a command task for each of the
directed tests—some measuring voltage, others current—ideally working from hand-drawn timing diagrams.

/* APPLY LINE_REGLN STIMULUS */
 task APPLY_LINE_REGLN_tf(
 inout LDO_PKT DRV_PKT,
 input AMS_IF_t VDIF
);
 TEST_TYPE_t TEST_TYPE;

 //Specify this task's test type:
 TEST_TYPE = LINE_REGLN;

 //Packetize and send to fixture:

 DRV_PKT.TEST_TYPE = TEST_TYPE;
 VDIF.D.TEST_TYPE = TEST_TYPE;

 /* Apply line inputs cycle by cycle */

 @(posedge VDIF.TEST_CLK);
 VDIF.D.SEL_VDD = 3'd2; //Select VDD18_max.
 TRIGGER_EVENT(3);

 @(posedge VDIF.TEST_CLK); //End on cycle boundary.
 endtask: APPLY_LINE_REGLN_tf

Code Sample 2. Driver-Side Command Task for LINE_REGLN Test

UVM has a wide variety of methods for capturing low-level timing information. Marriott and Ronan [5] broadcast
DDR retiming data to multiple byte lanes over a TLM analysis port. Bromley [6] suggested that capturing low-level
signal transitions in a UVM data packet is much too heavyweight a mechanism. He proposed the uvm_event as a
more effective candidate for transferring low-level timing data. We adopted Bromley's approach, using the global
uvm_event_pool. It ensures crisply-synchronized stimulus and response across all testbench components.

UVM's global-event machinery is activated by the few lines of code in the rectangular inset to Fig. 4. We reused
the event array E[0:3] across all tests. Calling static UVM method get_global() assigns a handle from the pool to
each event E[J] in the array. These lines of code must be duplicated in each driver-side command task that triggers
events, as well as in each monitor-side command task and fixture code block that awaits events. Because the event
pool is a singleton object, accessing it from multiple components will only create a single shared instance [7].

Fig. 4 diagrams the entire event chain for a typical directed test, LOAD_REGLN, of length four cycles. A driver-side
command task (upper left) triggers an event each cycle. A monitor-side command task (upper right) awaits the event
after calling its wait_trigger() method. Notice that events are triggered late in the clock cycle, allowing plenty of
time for analog outputs to settle. This enables the monitor code to immediately sample the measured value of VOUT.
This simple voltage measurement was performed by an XMODEL meas_value primitive instantiated in the fixture.

Figure 4. Event Chain for a LOAD_REGLN Test Across Testbench Components

APPLY_LOAD_REGLN_tf(): CHECK_LOAD_REGLN_tf():

VMIF

HOPPER: H

//Set up event pool.

VDIF

 «Apply new stimulus.»
//Allow DUT to settle:
 #tSETTLE;
//Trigger pool event:
 E[3].trigger();

//Await pool event:
 E[3].wait_trigger();
//Sample measured VOUT:
 VOUT = VMIF.A.VOUT;

always @(
 DIF_PORT.D.TEST_TYPE iff
 DIF_PORT.D.TEST_TYPE
 == LOAD_REGLN
) begin:LOAD_BLK
 . . .
 //Wait for E[3]:
 H.E[3].wait_trigger();
 «Activate measurement.»
 . . .
 end: LOAD_BLK

LOAD_REGLN

FIX

Global Event E[3]

E[3]

Fixture with Hopper

#tSETTLE

CLK

Typical Clock Cycle

Apply
Test Type

4 5 ms t4.5

Virtual
Interface Bus
(Hierarchical)

//Declare array of events:
 uvm_event E[0:3];
 foreach (E[J])
//Get event pointers:
 E[J] = uvm_event_pool::
 get_global(J);

Apply Input Trigger Event

//Body of TRIGGER_EVENT() task:
 #tSETTLE; //Analog settling time.
 E[I].trigger(); //Trigger UVM event.
 TRIG_TIME = E[I].get_trigger_time();
 uvm_report_info("DCMD", $sformatf(
 "DRV triggered event E[I] at %t",
 TRIG_TIME), UVM_LOW
);

The FIXTURE code that activates the voltage measurement appears in the middle of Fig. 4. An always code block
looks for a change in the TEST_TYPE to LOAD_REGLN. It then waits for each successive event E[J] in that test, by
calling the method E[J].wait_trigger(). In turn, the appropriate XMODEL measurement primitive is activated, as
discussed in previous work [3]. Thus, measurements are performed for specific tests at precise times in the cycle.

Because a uvm_event object cannot be declared inside a submodule, we embedded a class named HOPPER into
the fixture. It is derived from uvm_object. The fixture can then refer to any event by the short pathname H.E[J].

An array of four UVM events proved adequate for all the tests in Fig. 2a. Even for the repetitive TRIM_LEVEL test,
involving 16 cycles of trimming VOUT, we found it easy to reuse event E[1] sixteen times by calling E[1].reset.

V. DIRECTED LINE AND LOAD TRANSIENT TESTS

This section delves into the LOAD_TRANS and LINE_TRANS tests in greater detail. These tests verify the DUT's
transient response to abrupt line or load changes—an aspect of its functionality which should be verified by any
thorough SOC-level testbench. We show how UVM events can handle the sub-cycle timing aspects of transient tests.

The timing diagram in Fig. 5 shows these tests as operations within a longer random sequence. Each test applies a
single line-voltage or load-current step, taking two cycles. Section VI covers generation of the random sequence.

The driver-side command task successively triggers events E[0] and E[1], telling the monitor-side command
task just when to measure VOUT. Measurements like VOUT_sag span a time interval, delimited by these two events.
Regardless of transient ringing, primitive meas_min will accurately report the lowest peak within this time interval.

Test LOAD_TRANS starts on a clock edge at 7 ms in this specific sequence. (The 1-ms clock was shown in Fig. 4.)
On this edge, the sampled-and-held circuit conditions from a previous test, VDD18_sah and ILOAD_sah, are applied
to the DUT. This initializes current test conditions in a manner dependent on prior activity—or else utilizes a default.

On the next clock edge at 8 ms, the driver's command task steps the load current up (as in the figure) or down,
using a constrained random value ILOAD_rnd supplied by DRV_PKT. This abrupt step in the load current will push
the DUT's feedback loop to its limits—and the output VOUT typically reacts with significant undershoot or overshoot.

Figure 5. Timing Diagram for Consecutive Transient Tests

The monitor's command task measures the undershoot shown here—defined as the difference between the lowest
peak (labeled VOUT_sag) and the subsequent steady-state value (VOUT_sd3). If the undershoot or overshoot on
VOUT exceeds the design specification of 100 mV, a test failure is logged—indicative of a design flaw such as low
speed, loop instability, or poor transient response.

The random sequence proceeds. At 9 ms in Fig. 5, the LINE_TRANS test begins, its circuit conditions carried over
from LOAD_TRANS. At 10 ms, the line voltage steps up (as in the figure) or down, again stressing the feedback loop.

VDD18_sah

t8 97 ms

E[0]

meas_value
VOUT_sd3

11 ms

VOUT_soar

10
meas_min
VOUT_sag

meas_max
VOUT_soar

 TEST_LOAD_TRANS TEST_ LINE_TRANS

#t SETTLE #t SETTLE #t SETTLE #t SETTLE

TEST_TYPE
ILOAD_rnd
VDD18_rnd

. . . .

E[1] E[0] E[1]

ILOAD_rndILOAD_sah

VDD18_rnd

VOUT_sag
meas_value
VOUT_sd6

TEST_TYPE
ILOAD_rnd
VDD18_rnd

. . . .

The step height is a constrained random value, determined by the difference VDD18_rnd - VDD18_sah. We reuse
events E[0] and E[1] to activate a meas_max primitive. Sample 3 shows its SystemVerilog instantiation statement.
It is activated by transitions on the one-bit .from and .to inputs, which in turn are driven by procedural fixture code:

/* INSTANTIATE meas_max PRIMITIVE
 * Measures maximum output voltage over a time
 * interval delimited by events E[0] and E[1].
 */
 meas_max XP_VSOAR(
 .in(VOUT), .out(MIF_PORT.A.VOUT_soar),
 .from(TRIG_meas_x[0]), .to(TRIG_meas_x[1])
);

Code Sample 3. Fixture Code to Instantiate meas_max Primitive

Measured undershoot and overshoot values are forwarded via MON_PKT to scoreboard SCB. Based on the test type,
SCB calls a subroutine like SCORE_LINE_TRANS() to compare actual results against specifications. Our event-based
scheme proved to be a natural and intuitive method for handling the timing for all drivers, monitors, and the fixture.

VI. GENERATING A RANDOM SEQUENCE OF TRANSIENT TESTS

UVM has several ways to generate a random series of operations. We employed SystemVerilog's randsequence
generator [8] to create a randomly-alternating sequence of the two transient tests LOAD_TRANS and LINE_TRANS.
Parameter TRIALS sets the sequence length. This test sequence, named RAND_TRANS, is intended to stress the DUT
to its limits by better approximating the fluctuating real-world demands faced by an on-chip voltage regulator.

As in Sample 4a, the randsequence construct resides within the new() function for class TEST_RAND_TRANS.
Whenever this test is run from the command line, and its class constructed, the for loop is executed. On each pass,
either one of the randsequence productions—RS_LINE_TRANS or RS_LOAD_TRANS—is randomly chosen, and its
associated rule executed. Each rule, in curly braces, simply appends another test type onto the associative array
ORDER. When the loop is done, ORDER holds a randomly-alternating series of LINE_TRANS and LOAD_TRANS types.

class TEST_RAND_TRANS extends uvm_test;
 `uvm_component_utils(TEST_RAND_TRANS)
 uvm_factory FACTORY;
 ENVIRONMENT ENV;

//Associative array of test types:
 TEST_TYPE_t ORDER [int] = '{1:LINE_TRANS};

 function new(. . .);

 //Generate random ORDER of test types:
 for (int I = 1; I <= TRIALS; I++)
 begin:RS_LOOP
 randsequence(TRANSIENT)
 TRANSIENT: RS_LINE_TRANS := 7
 | RS_LOAD_TRANS := 3;
 RS_LINE_TRANS: {ORDER[I] = LINE_TRANS;};
 RS_LOAD_TRANS: {ORDER[I] = LOAD_TRANS;};
 endsequence

 end: RS_LOOP
 endfunction: new

endclass: TEST_RAND_TRANS

/* FACTORY RAND_TRANS_MONITOR CODE
 * Execute the monitor command tasks
 * in prescribed randsequence ORDER:
 */
foreach (ORDER[T])

 begin:XORDER

 //Call task based on test type:
 case (ORDER[T])
 LINE_TRANS:
 CHECK_LINE_TRANS_tf(MON_PKT, VMIF);
 LOAD_TRANS:
 CHECK_LOAD_TRANS_tf(MON_PKT, VMIF);
 endcase

 end: XORDER

 Code Sample 4a. Generating a Randomized Test Order 4b. Calling Monitor Command Tasks in Prescribed Order

One advantage of randsequence is that users can weight the test probabilities. (We wanted equiprobable tests,
but found that weights of 7 and 3 gave a more even distribution.) This construct also allows enumerated-type names.

(real)(xreal)

(xbit)

Figure 6. High-Overshoot LINE_TRANS Test During a RAND_TRANS Sequence

By generating this randomized array of test types at the very top level, then passing it down the hierarchy [9] to
both the factory driver and monitor for the RAND_TRANS test, we have resolved a common SystemVerilog problem.

Figure 7. First Three Tests During the RAND_TRANS Sequence

Large Overshoot

Step Up 310 mV

Last SAH Value

Exceeds
100 mV

Detailed
Overshoot
Waveform

VOUT_soar
1.52467 V

The language does random ordering based on thread locality. Two independent processes, like a driver or monitor
task, generate their own local ordering—they will not produce the same random sequence, unless we employ manual
hierarchical-seeding techniques [10]. Our top-down approach guarantees that an identical random ordering of test
types reaches both driver and monitor—in a manner impervious to code modifications or changes in logic simulator.

Once the ORDER array is passed down to the factory monitor and driver, they call their respective command tasks
in lockstep order, as prescribed by the array. Sample 4b shows a segment of the RAND_TRANS_MONITOR code. Its
case statement executes either the LINE_TRANS or LOAD_TRANS command task on each pass of the foreach loop.
Similar code is found in RAND_TRANS_DRIVER. This approach could readily be extended to include additional tests.

VII. SIMULATED RESULTS FOR A RAND_TRANS SUITE

This section demonstrates the results for a RAND_TRANS simulation which ran on Xcelium, with the random-seed
option -svseed 3947. Altering this global seed will vary the random ordering of the RAND_TRANS sequence.

Fig. 6 shows portions of the transcript printed at the verbosity UVM_HIGH. At left, a particular LINE_TRANS test
exhibits a high overshoot of 279 mV. This is presumably due to a large line-input step of 310 mV, determined by the
difference VDD18_rnd - VDD18_sah. The inset at the right of Fig. 6 magnifies the overshoot waveform. Notice the
overshoot is followed by a smaller undershoot; the monitor passes only the larger of the two to SCB. The scorecard
portion of Fig. 6 summarizes all the tests in this particular sequence. Four transient tests failed out of a total of ten.

Fig. 7 displays digital, analog, and event waveforms for the same run. It zooms in on the first few tests of Fig. 6.
At this timescale, the 279-mV overshoot is a tall, narrow spike. Notice that the spike occurs at the start of the cycle,
in response to the input step at 4 ms. But the event E[1] that completes the VOUT_soar measurement occurs later
in the cycle, at 4.9 ms, allowing plenty of time for the analog outputs to settle.

By randomizing the ordering of transient tests, and using the circuit conditions for one test to initialize the next,
we stress the regulator's feedback loop and its design parameters to the utmost—making our UVM testbench more
likely to reach the unanticipated corner cases prevalent on an actual mixed-signal silicon chip. Difficult-to-detect
issues like unidentified race conditions, latch-up states, and unprogrammed register bits might well be revealed.

VIII. CONCLUSIONS

This work has presented a UVM-compliant testbench that can apply a diverse set of directed benchtop-style tests
to an analog/mixed-signal voltage regulator, while isolating high-level UVM components from low-level test details.
Techniques to meet these goals included factory drivers and monitors which invoked test-specific command tasks.
The ability of directed tests to reach unanticipated corner cases was enhanced by generating a randsequence-based
series of randomly-alternating line-transient and load-transient tests—using the circuit conditions for each test as
initial conditions for the next. Stimulus and response were synchronized across testbench components—down to the
sub-cycle timing level—with the UVM event pool. This work thus demonstrates testbench mechanisms and coding
tactics that combine high-level CRV techniques with low-level directed tests, to maximize coverage of an AMS DUT.

IX. ACKNOWLEDGMENTS

The author wishes to thank Jaeha Kim and Rafael Betancourt for many insightful and encouraging discussions.

REFERENCES

[1] K. Jones (Rambus Inc.), “Analog and Mixed Signal Verification,” Part I.
[2] Scientific Analog, Inc. XMODEL. [Online]. See: https://www.scianalog.com/xmodel, FEATURE 2.
[3] C. Dančak, SystemVerilog OOP Testbench for Analog Filter: A Tutorial (Part 2). [Online]. See:

www.researchgate.net/publication/350412143_SystemVerilog_OOP_Testbench_for_Analog_Filter_A_Tutorial_Part_2.
[4] C. Dančak, “A UVM SystemVerilog Testbench for AMS Verification: A Digitally-Programmable Analog Filter,” DVCon 2022.
[5] Marriott & Ronan, “Run-time Configuration of a Verification Environment: A Novel Use of the UVM Analysis Pattern.”
[6] J. Bromley (Verilab), “First Reports from the UVM Trenches,” §4.2.1.
[7] IEEE Std 1800.2-2017 Universal Verification Methodology Language Reference Manual, §10(c) Synchronization Classes.
[8] IEEE Std 1800-2017 SystemVerilog Language Reference Manual, §18.17 Random Sequence Generation.
[9] J. Bromley (Verilab), “Slicing Through UVM’s Red Tape” §IV.B, Euro DVCon 2016.
[10] D. Smith (Doulos), “Random Stability in SystemVerilog,” SNUG Austin 2013. §3.4.3.

