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Abstract- Ensuring functional safety in the processor cores has become increasingly critical in modern 

applications, particularly under the rigorous standards of ISO 26262 and IEC 61508. Diagnostic coverage 

(DC) [1] closure, a cornerstone of functional safety verification, depends heavily on robust stimulus 

generation and fault detection mechanisms. However, the complexity of contemporary processors makes it 

challenging to access adequate observation and detection points, potentially leaving diagnostic gaps and 

missed faults. This paper presents a novel approach to achieving faster and more comprehensive diagnostic 

coverage closure through a Software Test Library (STL) tailored for processor core's functional safety. STL 

is developed as a reusable Safety Element out of Context (SEooC) in accordance with ISO 26262 [1] and a 

compliant item in accordance with IEC 61508 [2] requirements. It is designed to be lightweight, with minimal 

memory footprint, enhancing reusability across different systems. By developing the STL as a standalone 

safety element, it can be seamlessly integrated into various project without the need for repeated compliance 

checks, supporting quicker time-to-market and significant resource saving in diverse safety-critical 

applications. 

 

For fault simulation, VC-Z01X tool has been employed to support the STL's fault coverage objective. VC-

Z01X injects faults into a baseline "good machine (GM)" to create a "faulty machine (FM)" executing 

identical stimulus on both versions and comparing the outcome at designated observation and detection 

points. This comparison enables precise quantification of the STL's diagnostic performance, ensuring 

alignment with safety standards. In addition, the non-intrusive design of the STL allows external reporting, 

enabling rapid safety verification without requiring modification to the processor core's architecture. 

 

Simulation and FMEDA (Failure Modes, Effects, and Diagnostic Analysis) results confirm the efficacy of our 

approach. By leveraging the VC-Z01X tool and STL, higher diagnostic coverage was achieved much faster in 

our testbed when compared to legacy system use-case test cases. For proof of concept we have used a subpart 

of the core, specifically the u_instruction_execute module, with just a single STL test case out of 5000+ 

feature STL test cases that verifies simple load and store instructions. This test case was used in fault 

simulation to produce FMEDA results for netlist or synthesized design built with proprietary 3nm library 

cells. The FMEDA results were published for 2 failure modes only. 

 

For diagnostic coverage two detection statues or mechanisms have been considered namely, 1. DT (Detected 

by STL), this status will be reported if an incorrect operation is detected. 2. DW (Detected by watchdog), this 

status will be reported when the design under test (DUT) slips from the expected operational time. We have 

simulated 60916 faults out of which 55448 were testable faults and 6347 were Inconclusive faults due to 

significant divergence between GM and FM. With just 1 STL test case a cumulative diagnostic coverage of 

7.03% for 2 failure modes has been recorded. 
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I.   INTRODUCTION 

The reason for pursuance of faster diagnostics coverage closure using a Software Test Library is, in high-stake 

applications like automotive, medical and aerospace, delays in fault detection can have serious consequences. The aim 

is to detect the fault safely before any hazard can occur. Several aspects on the need for fault simulation and faster 

detection is indispensable in each of these contexts have been explained. 
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A. Automotive Safety  

As autonomous vehicles grow more complex, rapid fault detection is essential to prevent malfunctions that could 

lead to accidents. Faster diagnostic coverage ensures systems can identify and respond to issues within FTTI. 

 

B. Cybersecurity 

At Black-Hat conference 2021, Ledger's Hardware Security Expert Olivier Heriveaux used lasers to induce faults 

into the chip, leading to retrieval of secure key used to decode the information stored on a Cypto Hardware Wallet 

using STM32L496 Microcontroller. Heriveaux found that using just two laser-induced faults were enough to 

compromise the security of the chip [3]. Fault simulation gives the quantitative measure of the functional safety of a 

device indicating how well design can recognize and detect the faults. 

 

C. Medical Device Reliability and Patient Safety 

Medical equipment, such as pacemakers, ventilators, and diagnostics machines, must operate reliably under every all 

conditions to avoid jeopardizing patient health. Faults in these devices can lead to life-threatening situations if they 

go undetected. Fault simulation allows engineers to test how medical devices will respond to faults, ensuring that 

critical functions are not compromised in case of hardware failures. 

 

D. Space Applications 

Spacecraft and satellites operate in extreme conditions with limited opportunities for repair, so any undetected fault 

can lead to mission failure. Fault simulation is essential in verifying that onboard systems can detect, isolate and 

recover from faults autonomously. This testing is critical given the high radiation exposure, temperature extremes, 

and mechanical stresses involved in space. 

 

Several aspects of functional safety and the convergence of all the parameters considered can be explained in the 

below context. 

 

A.    Functional Safety 

Ensures the system operates safely even in the presence of faults or failures, addressing risk reduction measures to 

avoid or mitigate hazards. Governed by standards like ISO 26262 and IEC 61508. Functional safety drives the need 

for detailed failure analysis (FMEA/FMEDA). It defines safety goals and diagnostic performance targets based on 

ASIL requirements. The outputs expected are Safety requirements, fault tolerance mechanisms, safety goals and 

target ASIL levels. 

 

B.   FMEA (Failure Modes and Effects Analysis) 

Identifies potential failure modes, their causes, and their effects on system behavior. It's required to analyze failure 

scenarios and to evaluate severity (S), occurrence (O), and detection (D) to prioritize risks. For Functional Safety it 

helps to ensure all failure modes relevant to functional safety goals are identified. The expected outcome is a 

qualitative list of failure modes and their impacts. 

 

C.   FMEDA (Failure Modes, Effects, and Diagnostic Analysis) 

Enhances FMEA by quantifying failure rates and analyzing diagnostic coverage for fault detection and isolation. It 

classifies failures into Safe, Dangerous Detected (DD), Dangerous Undetected (DU), etc. It considers diagnostic 

mechanisms to calculate DC. It provides quantitative data to justify compliance with functional safety requirements. 

FMEDA determines the diagnostic coverage needed for achieving safety goals. The results from the exercise are 

Failure rate data, diagnostic coverage, and safety metrics like SFF (Safe Failure Fraction) and λ values (failure 

rates). 

 

D.   Diagnostic Coverage (DC) 

Measures the effectiveness of diagnostic mechanisms in detecting and managing faults. It is calculated as part of the 

FMEDA process. Higher DC is essential for meeting higher ASIL requirements to ensure fault detection and 

mitigation. 

 

 

 

 



E.   ASIL (Automotive Safety Integrity Level) 

Represents the safety risk level of a system component, based on: Severity (S) of harm, Exposure (E) to the 

hazardous event and Controllability (C) of the hazard by the user. The categories range from ASIL A (lowest) to 

ASIL D (highest) 

 

Due to all the above factors while on one hand, verification effort increases to deploy fault free functionality, on 

other hand the development cycle shortens demanding an alternate approach which will be discussed in this paper. 

 

 

II.   METHODOLOGY 

In this methodology there is an integration of fault injection and simulation capabilities of the fault simulation tool 

with software test libraries (STL). STL enables us to simulate the full range of logical functionalities in the core. Since 

the STL exercises critical processor pathways, the injected faults are more meaningful by providing valuable faulty 

machines. We will discuss the methodology more elaborately in the Execution Flow section and other steps involved 

to realize our approach. 

 

 

A. Failure Mode Effect Analysis (FMEA) 

The design was carefully analyzed and divided into distinct parts, each responsible for executing specific functions 

within the overall systems. For each part, we identified potential failure modes and examined how these failures 

could impact the entire design. This analysis helped categorize the potential effects of individual part failures on 

system functionality. DC fault model was used for permanent faults. Other fault models were used to model 

dependent faults and transient faults, but that is beyond the scope of this paper. For our proof of concept, we focused 

specifically on failure modes related to incorrect operation, live lock and deadlock related only to permanent faults. 

 

 

 

B. Categorizing Identified Failure Modes 

We have categorized the failure modes into below types [4] 

 

1. Mission: Failure modes of parts executing primary functions. The failure rate associated with this will be 

categorized as single point or residual faults. 

2. Passive: Failure modes of parts responsible for fault detection. The failure rate associated with this will be 

categorized as multi-point-failures. 

3. Active: Failure modes of parts responsible for safety measures. The failure rate can either be associated to 

single-point failure or multi-point failure. 

 

 

 

 

C. Assessing Technology Specific Failure Rates 
TABLE I 

TECHNOLOGY SPECIFIC FAILURE RATES 

Technology type Fault type Failure in FIT 

Digital Permanent 1FIT/gate 

Memory Permanent 1FIT/bit 

 

D. Calculating the ISO26262 safety metrics 

1. Raw failure rate [1] [4]: 𝜆𝑝 = (Failure in FIT for Digital technology type) × (Total area of the sub-part / (unit 

design element size) 

2. S𝑝%: Safe fault fraction. 

3. Dangerous fault fraction: 𝜆𝑝d = 𝜆𝑝 - S𝑝% 

4. 𝐷𝐶%: Diagnostic coverage of STL for a failure mode. 

5. Residual Faults: 𝜆RF = 𝜆𝑝 × (1 − S𝑝%) × (1 − 𝐷𝐶%) 
 

 



E. Requirement of STL 

Standard testing procedures often rely on system use case scenarios or standard benchmarks like cache hit/miss and 

Dhrystone respectively. However, these scenario-driven tests may not comprehensively address all logical functions, 

leaving potential safety gaps. Using STL allows us to move beyond scenario-specific testing by individually 

targeting each design function. The STL targets each core function to maximize fault path activation, enhancing 

fault detection reliability. A common limitation in functional safety verification is incomplete stimulus coverage, 

which leaves potential gaps in fault detection. In contrast, the STL's comprehensive logic coverage increases the 

probability of activating and observing faults, significantly improving fault coverage when paired with fault 

simulation tools. The STL has also been optimized to ensure the detection of the fault within Fault Tolerance Time 

Interval (FTTI) [1], which is essential for safety-critical application where prompt fault detection is critical to 

prevent failure. By catching faults within the required FTTI, STL supports systems in meeting stringent safety 

integrity requirements. The STL's efficiency is further enhanced through its capability for both boot-time and run-

time execution. During boot, it verifies core functionality, establishing a safe operational baseline. During normal 

operation, it periodically checks for latent faults without impacting system performance. This dual capability enables 

continuous diagnostic coverage, caching faults that might only emerge under specific operational conditions. With 

the STL, the status will be reported to an external  pseudo-register, the strobing becomes simpler, making the setup 

reusable across projects. 

 

 

 
Figure 1. Representative image of STL synthesis and execution setup, Including the strobe file. 

 

F. STL capabilities 

The STL includes over 5000 feature test cases. In the table below, we highlight a selection of these test cases to 

demonstrate how each feature is specifically targeted within our DUT. 

 
TABLE II 

FEATURE SPECIFIC TEST LIST 

Feature Description 

Feature 1 Testing of logical instructions AND, EOR and ORR 

Feature 2 Testing of multiplication instructions 

Feature 3 Testing of branch and addition instructions 

Feature 4 Testing of GPR registers 

Feature 5 Testing of CRC instructions 

Feature 6 Testing of load/store instruction 

Feature 7 Testing of bit operation instructions 

Feature 8 Testing of subtraction instructions 

Feature 9 Testing of shift instructions 

Feature 10 Testing of conditional select instructions 
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G. VC-Z01X overview [5] 

The below image presents a brief execution flow of the VC-Z01X tool, we will be using the tool for the functional 

safety use case (FuSa). The tool takes the design files, Test bench files, Strobe file and the Standard fault format file 

(SFF) to produce the fault DB. The flow will be explained more elaborately in Execution Flow section. 

 

 
Figure 2. VC-Z01X overview 

 

H. Execution Flow 

We will start with generating the test case for required instruction, like for testing multiplication, division and addition 

instructions. After the build, compiled hex or elf files are loaded into external main memory. Logical simulation is 

run, to check the credibility of test case. 

 
 

                                                                                                           
 

Figure 3. STL test case hex file loaded into the memory, followed by logical simulation of the elf file. The “TEST PASSED” status proves the 
sanity of the test case on a GM. 

 

Once the test case’s credibility is proved, we will proceed with the preparing the SFF for status definition and fault 

injection location. 

 

 
Figure 4. SFF code to target, various hierarchies with stuck-at-0 and stuck-at-1 faults, Fault injection at u_instruction_execute is only considered 

for FMEDA for this paper. 

 

Once the SFF is prepared, we will proceed with the TCL script automation of the fault simulation, In the below 

image we will 1st set the load sharing facility (LSF) grid for the fault sim tasks at “set_submit_cmd”, next we will 
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create the campaign by providing the SFF, compiled DB simv.daidir, campaign name, fault sampling percentage, 

And the scope of the DUT at “create_campaign”. After creating the fault campaign, we will set the campaign as the 

default for the next tasks at “set campaign”. After setting the default campaign, we will proceed to set the max 

number of parallel fault simulation that can be simulated at “set_config”. Next at “create_testcases” we will provide 

the name of the STL test case along with the required elf file for the toggle simulation. Once the toggle simulation is 

over we will proceed to fault simulation at “fsim” and finally we will get the report containing DC at “report –

campaign automotive_cpu_ss”. 

 

 
Figure 5. TCL script code for fault simulation automation. 

 

 

III.  FMEDA RESULT* 

After the successful execution of faultsim, below diagnostic coverage report is generated. This particular report is with 

testing just load and store instruction and only u_instruction_execute module is targeted for both the cores present in 

our DUT. 

 

 
Figure 6. The Diagnostic coverage report. 

 

VC-Z01X also facilitates the fault simulation status per hierarchy, hence the complete picture of DC status for all 

hierarchies from top to bottom is obtained. 

 

 
Figure 7. The Diagnostic coverage report per hierarchy. 

 

 



 

A. FMEDA: 

DT status will be flagged when an incorrect operation is detected, and DW status will be flagged when a livelock is 

detected. 

 

As we got 6347 hyper active (HA) or inconclusive faults, For the DC calculation HA numbers will be removed from 

total testable faults, Hence the actual testable faults become 55448 – 6347 = 49101 faults. 

Now the DT when adjusted for the new denominator of 49101, it becomes 360/49101 = 0.00733 => 0.733%. 

Similarly, DW when adjusted for the new denominator of 49101, it becomes 3091/49101 = 0.06295 => 6.295%. 

 
TABLE III 

FMEDA for failure mode: Livelock 

Part Failure 
mode 

Tech 
node 

Safety 
related 

Failure 
mode 

type 

No of unit 
design 

elements 

𝜆𝑝 S𝑝% 𝜆𝑝d 𝜆𝑝 % 𝐷𝐶% 𝜆RF 

u_instruction_execute  Livelock  3nm  YES  MISSION  350  350  8.89%  318.885  0.02%  6.295%  298.81  

 
TABLE IV 

FMEDA for failure mode: Incorrect operation 
Part Failure 

mode 

Tech 

node 

Safety 

related 

Failure 

mode 
type 

No of 

unit 
design 

elements 

𝜆𝑝 S𝑝% 𝜆𝑝d 𝜆𝑝 % 𝐷𝐶% 𝜆RF 

u_instruction_execute  Incorrect 
operation 

3nm  YES  MISSION  350  350  8.89%  318.885  0.00%  0.733%  316.54  

 

𝜆𝑝 : Raw Failure rate in FIT. 

S𝑝%: Safe fault fraction. 

𝜆𝑝d: Dangerous fault fraction. 

𝜆𝑝 % : Failure rate distribution for the Failure mode as a percentage of whole design's failure rate. 

𝐷𝐶%: Diagnostic coverage. 

𝜆RF :  Residual Faults. 

 

With just one STL test case we achieved a cumulative DC of 6.295 + 0.733 = 7.03% (rounded off from 7.028%), Now 

when 5000+ test cases will be simulated for all the sub-parts of the design the cumulative DC will be much greater 

than current number. The 7.03% is achieved fairly quicker due to simulation of STL. The same quick result is expected 

from the complete suite. 

 

CONCLUSION 

A cumulative DC of 7.03%, was achieved with the execution of 1 STL test case, for just a single test case targeting 

the load-store function, The DC number is considered good for a single test case targeting failure modes, Incorrect 

operation and live lock. Once the complete suite of the STL is simulated the cumulative DC is expected to surpass the 

current DC achieved by a single STL test case. Since the STLs were coded to test single functions rather than specific 

sequence of functions (which can be inferred as a scenario). The DC numbers achieved through STL cannot be directly 

compared to our previous fault analysis methodology employing standard processor test cases like Dhrystone, cache 

hit/miss scenarios. Therefore, author is unable to produce a comparison figure. 

Fault simulation’s traditional role in developing chip manufacturing tests has been expanded into other areas equally 

critical. During chip development, it helps to ensure that verification methodologies are robust enough to catch all 

design bugs. The strict requirements of functional safety standards such as ISO 26262 require fault simulation to 

demonstrate that safety mechanisms can detect faults in the field so that corrective action can be taken. Methodology 

discussed integrates the fault simulation capabilities of the tool with the benefits offered by Software Test Libraries. 

High reusability provides tremendous future scope and would help in fast closure of fault simulation with FMEDA 

report generation. 
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