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Abstract-Integration of multiple ICs in a single package is critical for high performance computing. Due to the huge 

number of connections after package the ICs, it is hard to verify the correctness of the connections. The traditional way to 

verify the connections requires a lot of manpower and time and is either not exhaustive or too late in the process. This 

paper will introduce a new way to verify the package connectivity using formal verification that can exhaustively verify 

all interconnections between the IC blocks. The flow is automatic for all steps from creating connectivity spec to verify 

package output connectivity. The automatic parallel algorithms on compute grid can verify huge numbers of connections 

in minutes even seconds. The script for the flow is simple and only takes a few minutes to setup. Once the script is ready, 

it can be reused for different package projects. 

I.   INTRODUCTION 

Historically IC Package design has been a relatively simple task which allowed the die bumps to be fanned out to 

a geometry suitable for connecting to a printed circuit board.  The package netlist was often captured by the package 

designer typically using Excel to manually assign net names to the desired die bumps and BGA balls to achieve the 

intended connection. 

 
Figure 1. History of IC package design 

 

Modern package and interposer design has become a system integration task:  The designer has the responsibility 

to take input from various stakeholders, who are often designing their content at the same time the package or 

interposer is being designed and create a design which is both electrically and physically correct, but functions as 

designed too. 

For the purposes of this paper, the term “substrate” will be used to generically represent both the package and 

interposer design.  For many design and verification tasks, the target implementation of either package or interposer 

can be used interchangeably as the design task and verification tasks are similar despite the differences in 

manufacturing technology and implementation tools. 

II.   CHALLENGES 

With the rapid advances in package technology, the explosion of AI and HPC applications, substrate designers are 

facing design challenges which are breaking their existing methodologies.  Designs with 500,000 bumps and several 

hundred thousand connections are becoming commonplace.  With hybrid bonding technology promising millions of 

bump connections, a spreadsheet is no longer capable of managing the complex connectivity. 
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Heterogeneous integration has brought with it some challenges for the package designer.  The source data is being 

supplied in a myriad of data formats: 

• Ball map CSV files 

• LEF/DEF from P&R tools 

• GDS 

• Verilog RTL 

• Spreadsheet Data 

• Plain text files 

As each component of the design is introduced, it must be connected to the other components in the system.  

Spreadsheet based design requires every connection be defined as a scalar.  One can quickly see how High 

Bandwidth Memory (HBM) based design with its 10241 bit width would become tedious and error prone to define 

the connectivity one bit at a time. 

To handle the explosion of die-to-die connections, substrate designers are beginning to embrace language-based 

design to define the connectivity of the system.  It is far more efficient and less error prone to write Verilog RTL 

using proper bus notation to connect the various components of a system together than it is to define the connectivity 

one bit at a time in a spreadsheet or develop specialized Excel macros to populate a connectivity table.  Spreadsheet 

based solutions, even with custom macro development, do not scale to hundreds of thousands or millions of bumps.2 

 

Figure 2. Current flow of package design and verification  

Xpedition Substrate Integrator (XSI3) from Siemens EDA, helps engineers address the challenges of modern 

substrate design.  In the Siemens substrate design flow illustrated above, the source data on the left is aggregated 

from the source die, BGA, and netlist data.  Once all the data has been imported into XSI, the netlist and physical 

data can be written out for the appropriate implementation tool(s).  Below is an example of Verilog source imported 

into XSI. 

 
1 HBM memory bus is very wide in comparison to other DRAM memories such as DDR4 or GDDR5. An HBM 

stack of four DRAM dies (4‑Hi) has two 128‑bit channels per die for a total of 8 channels and a width of 1024 bits 

in total. (from Wikipedia:  https://en.wikipedia.org/wiki/High_Bandwidth_Memory) 
2 The maximum number of rows in Excel is 1,048,576 (from https://support.microsoft.com/en-au/office/excel-

specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3) 
3 Xpedition Substrate Integrator, XSI, from Siemens EDA enables heterogeneous and homogeneous 2.5/3D IC 

Package Connectivity Planning, assembly prototyping, & system technology co-optimization.  See:  

https://eda.sw.siemens.com/en-US/ic-packaging/software/substrate-integrator/ 



  

Figure 3. Example of Verilog source imported into XSI 

 

Figure 4. Example of aggregate netlist 

Once the source design data has been aggregated, XSI can export connectivity in a number of formats for 

verification purposes.  The aggregate netlist can then be validated against the reference netlist the design was 

assembled from. 

III.   FUNCTIONAL VERIFICATION 

The idea of running functional verification of a complex substrate assembly is appealing as it would validate the 

system is connected correctly and functions as expected.  From a distance, functional verification seems like a 

solvable problem.  The core of the design is typically a chip being design in-house so one might assume a model and 

testbench exist and are readily available.  However, functional verification of a substrate requires more than just the 

main silicon device.  There is a tremendous amount of additional information to run a simulation, some examples 

are: 

• Functional models for each die in the system 

• Models or provisions for discrete components 

• Testbench to exercise the verification and verify correctness 

When a design employs chiplets (e.g., HBM), functional models may not be available as these components often 

come from third party suppliers.  Often the chip RTL and verification environment aren’t available to the substrate 

designers.  Even if it were available, does the substrate design team have the expertise to adapt it to the full package 

or interposer?  Do they have the expertise to run the verification tools?  If everything were available along with the 

resources who can run such a verification, how long would a run take?  Performing a functional verification on a 

modern package design is like the challenges faced by PCB designers where functional simulation has never been 

embraced mostly due to the lack of models. 



Another functional verification approach is to write specialized models which exercise the die-to-die connectivity 

of the substrate.  These sorts of models are often much simpler and don’t need to account for complex clock 

schemes.  They are written to push randomized data through the substrate in a representative fashion with automatic 

checking to ensure the data sent into the system matches the data which comes out of the system.  

 

Figure 5. Example of functional verification 

While this approach to functional verification is typically easier to implement and runs very quickly, it does 

require development of specialized Verilog models and testbenches specifically to verify substrate connectivity.  

The skillset required to do this development is not typically found in the domain of package and interposer designers 

so it needs to be staffed accordingly. 

While it is technically possible to perform functional verification of a complex substate assembly, it is often 

impractical to do so for a number of reasons.  Functional verification on a modern substrate design is similar to the 

challenges faced by PCB designers where functional simulation has never been embraced primarily due to the lack 

of models. 

IV.   LVS (LAYOUT VS SCHEMATIC) 

What about LVS?  Can’t LVS verify our system?  Yes and no. 

While LVS at the system assembly level is gaining popularity thanks to tools such as Calibre 3DSTACK, LVS 

can only tell us if the physical implementation of the design matches the source netlist.  LVS can identify shorts and 

opens and other similar physical issues but it cannot tell us if the design is actually “correct”.  LVS does not address 

these questions:  Does it work as designed?  Does it perform the function as intended? 

LVS can only tell us if the source netlist matches the layout netlist.  But what if the source netlist is incomplete or 

has errors?  If the netlist is wrong but the layout matches the incorrect netlist, LVS will pass giving the designer a 

false sense of security. 

V.   AUTOMATIC FORMAL-BASED APPROACH 

The formal verification tools specializing in connectivity check are good fit for verifying package connection 

early in the process. The formal connectivity solutions don’t require package designers to write lengthy testbenches 

and assertions for possible millions of connections while otherwise required by using simulation. Formal 

connectivity solutions don’t require package designer to understand the function of the design or know how to run 

simulation either. For verifying the connections between multiple dies, formal tools don’t need the functional 

models of the dies, and only need the system top module that instantiates the multiple dies and has the connectivity 

information of the dies, and the module port definitions of the dies, normally the “black box” modules received by a 

package team.  

Formal verification is powerful for verifying package connections in chiplets. Here's how formal methods can 

help in this context: 

1. Detecting connection errors: Formal connectivity solution can detect errors related to package connections. It can 

mathematically analyze the package output module against the connectivity spec and identify inconsistencies or 

violations of intended connections that may lead to electrical faults. When it finds broken connections, it provides 

waveforms to show the issue, and has all other necessary features for debugging the issue.  

2. Ensuring Correctness of connections: Since formal is doing exhaustive mathematically analysis considering all 

possible stimulus, it can verify that signals are routed as intended by proving connections adhere to the specified 

requirements. When it proves a connection, there is no scenario that can break the connection, i.e., no overlooked 

scenarios. 



3. Avoiding Short Circuits: Formal verification can identify potential short circuits or other connectivity issues in the 

package by finding unintended connection paths. 

4. Complex Systems with millions of connections: The formal flow generates golden connection spec automatically 

without manually creating csv files of connections and can verify large numbers of connections using parallel 

algorithms.  

5. Early Detection: Formal verification can be applied right after package prototyping, before package physical 

implementation. Any mistakes in the planning and prototyping stage can be caught early, which can save lots of 

time and money. 

6. Safety and Reliability: Only formal verification can do exhaustive analysis, it is crucial to use formal verification 

to verify the correctness of package connections of ICs for industries like aerospace, automotive, and medical 

devices. 

7. Compliance: The formal tools we are using are ISO 26262 certified which can be essential for audits and quality 

control for industries with strict regulatory standards.  

 

When using formal tools to verify the correctness of the package connections after package prototyping is done, we 

need the specification of the connections. Some companies manually create connection spec in CSV file and write 

script to generate the system top to instantiate the multiple dies following the connection spec. In this situation, the 

existing CSV file can be used as spec for verifying package output file. When there is no existing CSV spec of the 

connections, either the user manually creates the connection spec in a format accepted by formal tool or uses 

connectivity extraction tool to generate the specification if the design/verification team has already created system 

top module and has done functional verification. We can use the system top module and the black boxes of the dies 

as golden reference design and its connections as specification. When we have the spec of the connections and the 

output netlist file from the package tool, we can run formal connectivity tool to verify if the package output design 

satisfies the connection specifications. The two flows of using formal verification tool to verify package 

connectivity are shown below.  

                       
(a) Using existing connection spec in CSV         (b) Using reference model to extract connection spec                   

Figure 6. Formal verification flows for verifying package connectivity. 
 

In our testcases, we used the flow shown in Figure 6 (b) by using golden reference models4 and Siemens EDA 

tool Connectivity Explorer to extract connections automatically from the reference model and export them into CSV 

file, using the package tool XSI to generate Verilog netlists, and using formal tool Check Connect to automatically 

generate checks for the connections in the CSV file and formally verify if the package output file satisfies the 

connections in the CSV spec file, i.e., if package process has broken any connections in the golden reference model. 

Here is the detail of the flow we are using. 

 
4 A “golden” reference model is typically developed by the design engineering team and is created over time 

through the design phase and extensive simulation.  Once the design team is satisfied with the simulation results, the 

representative model is often referred to as the “golden model” which other simulations and analysis must correlate 

against.  Development of the reference model is typically a combination of hand written and automatically generated 

RTL exercised and verified against hand written and automatically generated testbenches and stimulus. 



 
Figure 7. The detail of the flow using formal verification 

 

When using formal connectivity solutions, the script is very simple and only need a few minutes to create. After 

the script is ready, the run is automatic. Here is an example of the Makefile to run all the steps. The config.txt has 

the simple definition “-inst *” that tells the Explorer to extract all connections for all instances. 

 
#### Compile designs 

Compile_vl: 

 vlog -sv -f flist_golden.txt -work lib_golden 

 vlog -sv -f flist_package.txt -work lib_package 

#### Generate Connectivity Spec  

Generate_conn_csv: 

 qconnect_check -explore -od log_csv \ 

 -infile config.txt \ 

 -dut F1760_Crete -work ./lib_golden 

#### Run Formal Analysis 

Check_connect: 

 qverify -od log_cc -do "\ 

 connectcheck compile -d F1760_Crete -work lib_package;\ 

 connectcheck load csv log_csv/qconnect_explore_F1760_Crete.csv;\ 

 connectcheck verify " 

 

When using the formal tool to verify package connections, we only care about the connections between the 

blocks, and don’t need the function inside each block. The package tool can export modules without internal logic 

and only keep ports and connections between blocks. Package teams often only gets the system top module and 

“black box” of dies from system verification team. Even when package teams get the full functional modules from 

system verification team for the golden reference model, Connectivity Explorer can treat the die modules as black 

boxes and extract the connections between the dies. Due to “black box” modules of dies, the formal tool can run 

very fast with any size of the system. When verifying the package design against the connection spec CSV, Check 

Connect also runs fast and can handle big systems with many dies since there are not many sequential logics for 

analyzing. 

When running Check Connect on the package design with the connection spec CSV, if the tool exhaustively 

proves all the connections, we are assured that the package design satisfies the connectivity spec; if the tool finds 

any violations, we know that the package design has broken some connections and routed signals in wrong paths. 

When the tool finds a violation, it provides a short counterexample in Wave tab to show the violation of the 

connection. With the waveforms and rich debug features such as source tracing and schematic view, provided by the 

formal tool, we can easily find the root cause of the issue. 

Is there any possibility that the reference model or the connection specification miss some connections? It is 

possible since system functional verification may not be exhaustive, or package planning may be started before 



system functional verification completes. Is there any possibility that the package design accidentally adds extra pins 

or connections? This situation is rare, but not entirely error prone, such as typos of pins that actually add new pins. 

One way to help on this issue is using a unique feature of Check Connect to generate a missing-port report that lists 

the ports of the top module and the dies not covered by any connections. If there is a port uncovered by the 

connection specification, first we will check if the port definition in the package design is correct, not a mistake. If 

the port definition is correct, the problem may lie either in the reference model from which the CSV file is extracted 

or in the originally manually created connection specification. For missing connection definitions, we can manually 

add them, and rerun Check Connect on the package design.    

We have run two designs using the flow mentioned in Figure 7. The wall time including compile and extracting 

the connections of the reference model for the two test cases is 15 seconds and 35 seconds respectively. The wall 

time including compile and checking connections of the package design for the two test cases is 30 seconds and 56 

seconds respectively. Here is the result table for the two testcases.  

 

 Time for extracting 

connection spec 

The total number  

of connections 

Verification results 

of the package design 

Time for verifying 

 the package design 

Design 1  15 seconds 21367 All proven 30 seconds 

Design 2 35 seconds 43440 All proven 56 seconds 

 

When using Check Connect to generate the missing-port report for Design 1, it identified that two ports 

“U12.DFX_THERMO0” and “U12.DFX_THERMO1” are not covered by the connection specification. Checking 

the source files of both the reference model and the package design, both don’t have connections for these two ports 

shown in Figure 8. The root cause of missing connections for the two ports in the package design is caused by 

missing connections in the reference model. The tool can not only verify package designs, but also find possible 

missing connections in the reference models. 

In the case identified below, the designer has purposely left two thermal sensor pins unconnected.  Check Connect 

identified these two as suspicious and the designer would have to decide how to disposition them.  It is not 

uncommon to leave unused pins floating.  The design team later confirmed leaving these two pins floating was 

indeed intentional but was also impressed it was identified. 

 

      
 

Figure 8. Missing two connections 

  

VI.   CONCLUSIONS 

We have addressed the challenges of verifying package connectivity and illustrated how to use formal tools to 

verify connectivity for package designs. The setup for running the formal tools is simple, only needs a few minutes. 

The connection extraction and the package connection verification run fast and can work on big systems that have 

many dies. This method requires minimum manual work. Once the setup is done for one design, we can reuse the 

setup for another design with a little tweak such as changing the design name and source file list.  

When starting the connectivity verification earlier right after package planning and prototyping using formal, the 

quality of the physical implementation can be improved dramatically and the time to market can be shorten 

significantly. The ease of use of the method makes its adoption a no-brainer decision.  
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