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Abstract-A Constrained Random Testbench plays a key role in functional verification but fine-tuning it is non-trivial, 
laborious, and risk prone. Some testbench issues can slow down the entire verification process and make it harder to 
achieve coverage closure in a timely manner. This paper proposes a methodology of adopting AI/ML early in the 
verification stages to stabilize (i.e., mature) the testbench faster. Using this methodology, we achieved approximately two 
weeks of savings, especially through a reduction in the manual effort to write directed tests, in the number of regressions 
to find corner case bugs, and a 10-15% reduction per block of grid resource usage. 

 
I. INTRODUCTION 

A constrained random testbench plays a key role in verification sign-off, but fine-tuning the stimulus constraints is 
non-trivial, laborious, and risk-prone. Primary source of the testbench issues such as illegal stimuli, missing stimuli, 
and over and under bias, stems from the misalignment of the implemented constraint stimuli space and the intended 
stimuli space.  These issues can lead to longer verification cycles, reduced verification efficiency, costly debugging, 
and even more severe issues like bug escapes due to omission scenarios [1]. Testbench developers can face various 
practical challenges such as no visibility to the constrained stimuli distribution, under- or over-biasing, under- or 
over- constraining, evolving coverage specifications, and debugging testbench failures.  The current solutions (such 
as interactive debugging) are not most applicable for debugging or optimizing the test regression or exposing these 
testbench issues automatically. Given the resource and time limitations in the verification cycle of a chip, it can be 
challenging and time-consuming to mature testbenches that can target a diverse range of areas in the design space to 
find both testbench and design bugs, while trying to hit the coverage targets efficiently.  
 
In projects, bugs found by the designers can be broadly categorized into the following three categories: 

1.  Easy-to-find bugs: Usually, these bugs can be exposed by a set of input or input sequences that 
systematically sweeps through all input combinations. 

2. Corner scenario or hard-to-hit bugs:  These bugs are typically found in the following: 
i) Complex logic with independent inputs 
ii) The logic which requires a long loop of action to trigger 
iii) Rare occurrence scenarios that may show up and disappear. 

3. Dead bugs: These bugs are latent RTL bugs hidden so deep that the designer would never know. 
 
Our block level Design Verification (DV) environments are built through careful consideration to hit Type #1 bugs 
during the initial phase of projects. The Type #2 bug category typically needs random regressions, good stimuli, and 
scenarios to hit them. These bugs are hit mostly during the late stage of project milestones, and in a few cases, these 
bugs escape to silicon, which must be avoided. Type #3 category bugs exist deep inside RTL and need months of 
regression to hit them.  It depends on scenario generation quality, delay profile randomization, and input stimulus 
generation quality. 
  
Graphics Processing Unit (GPU) architectures are designed to have great amount of parallelism to achieve high 
performance. This parallelism provides huge challenges on finding bugs in small corners of complex logic  as well 
as closing coverage of both code and functional on time. A significant manual effort is needed to write semi-directed 



test cases to hit corner cases at the block level and cluster level, further increasing the time taken to close functional 
and code coverage at the block level. Our team was exploring various functional verification solutions to shift-left 
the functional coverage closure. We posed the following criteria for adopting such solutions (preferably an AI/ML 
based): 

a. Shift-left the finding of corner case RTL, testbench, and constraint issues 
b. Accelerate functional or code coverage automatically  
c. Help reduce the manual effort to write test cases of direct scenarios for hard-to-hit scenarios 
d. No manual effort to rewrite or change functional coverage models 

II. OUR APPROACH 

With our goal to accelerate functional verification through the stabilization of the testbench, we wanted to share our 
experience of adopting an AI/ML technique such as Intelligent Coverage Optimization (ICO) in VCS [2,3] early 
in our verification cycle. ICO technology is designed to improve the stimuli quality through diversification in the 
constraint stimuli space without requiring any rewrite of functional coverage models. We demonstrate how we 
leverage such AI/ML technology using multiple real-scenario case studies. 
 
In a controlled experimentation, we observed an additional 30% rate of testbench issues manifested while using ICO 
in a testbench deemed to be stable (Figure 1). These additional issues comprised constraint inconsistency failures, 
design SVA failures due to issues in the testbench UVM driver, scoreboard checker issues, and some deadlock 
scenarios. Moreover, we achieved the same 95% functional coverage 40% faster with ICO, i.e., we met coverage 
with only 6 iterations of regression using ICO as opposed to 10 iterations without it. 
 
We learned that fixing the testbench issues and optimizing the regression in the late stage of the project is 
comparatively expensive. A methodology using AI/ML that can learn and improve the stimuli on the fly by 
providing useful testbench analytics to the user may help achieve testbench stabilization much faster, thereby 
shifting left the overall verification project cycle. 
 
 
 
 

 
 

Figure 1: Rare testbench issues exposed using AI/ML on a stable testbench 
 

 

Default simulation 
UVM error count per 
regression

Simulation using AI/ML 
UVM error count per 
regression

Regression 1 67 84

Regression 2 64 86

Regression 3 70 79

Regression 4 72 111

TOTAL 4 regressions TOTAL=273 TOTAL=360

Inconsistent constraints: 89
Scoreboard mismatch errors: 7*

Inconsistent constraints: 0
Scoreboard mismatch errors: 0



 

Figure 2: Stimuli Diversity Progress 

In this paper, we propose a methodology for adopting AI/ML techniques (such as ICO) early in the project cycle. In 
Figure 2, we illustrate the progress of diversity (a proxy for stimuli quality) while running back-to-back regressions.  
The diversity in values generated is computed as a percentage of Shannon entropy [4] achieved over the maximum 
possible diversity. In practice, achievable diversity can be limited by constraint tightness.  

The first step is to determine the eligibility of a given testbench suitable for AI/ML application. This is done using a 
prognosis report that indicates whether the testbench has sufficient freedom available to diversify and bias the 
random variables in the testbench using AI/ML. If the constraints are more directed in nature, then they can be 
considered tighter and have less freedom to bias as opposed to constraints that are less directed. The constraints with 
more freedom (i.e., capturing larger stimuli space) enable AI/ML to improve the diversification of the stimuli space. 
Once the testbench is determined suitable, we proceed with using the AI/ML application on the entire regression. 
This methodology proved to be extremely helpful in uncovering testbench latent issues, hard-to-hit scenarios, and 
exposing bugs early on.  

This AI/ML technology provides a qualitative assessment of testbench randomness and the complexity of 
constraints. This assessment gives us a base on which we can proceed to enable the AI/ML application for that 
testbench. In Figure 3, we present the variable randomness and value randomness as percentages and constraint 
density (i.e., the average number of constraints per variable) for the Cache testbench. Similarly, we present data for 
the Render Block testbench in Figure 4. Higher values show which testbenches are suitable for AI/ML applications 
as described in the next section. 

 

Figure 3: Cache testbench randomness & complexity (a) Variable Randomness (b) Value Randomness (c) Constraint Density 

 

 

Figure 4: Render Block testbench randomness & complexity (a) Variable Randomness (b) Value Randomness (c) Constraint Density 



III. RESULTS 

Overview 
 
We will first present an overview of the results observed for 3 projects: A, B, and C, comparing the use of AI/ML 
techniques in each project versus without using AI/ML.  We will then discuss each project in more detail later. 
 
For project A, we applied AI/ML solutions in the late stage of the project when the technology was made available 
to us. Surprisingly, even for the late stage of the project in which the testbench and DUT are considered stable, we 
observed 30% more bugs in both testbench and DUT (Figure 1). Moreover, we witnessed a 40% reduction in the 
number of regressions needed to achieve the targeted coverage. Encouraged by the results, we decided to adopt 
AI/ML solution early in project B. 
 
We intercepted project B’s execution with AI/ML solution and immediately started witnessing a positive impact. As 
shown in Figure 5, we were able to uncover most of the bugs in the first 4 weeks as compared to without adopting 
the proposed methodology Note, in the X-axis, we show the bugs exposed per week relative to the starting week of 
the two approaches respectively. We explained our experimental setup in more detail later. 
 
For project C, as shown in Figure 6, we compared the functional coverage rate with and without the proposed 
methodology on the same block in a parallel setup With improved diversified stimuli, we were able to achieve faster 
coverage in fewer iterations. This helped us to write fewer directed tests, thereby saving 2 weeks of manual effort. It 
also helped us to optimize the regression size, enabling a 15% reduction per block of grid resource usage. 
 
We observed that AI/ML guided us to shift-left functional verification by several weeks consistently across projects.  
 

 
 

Figure 5: Shift-left project timeline with early use of AI/ML 
 

 
 

    Figure 6: Accelerating Coverage rate with early use of AI/ML 
 



Project A – L2 Cache Block details 
 
We provide an overview of the Cache block inside a graphics IP, as shown in Figure 7.  The Cache test bench is 
implemented using constraint randomization, where the entire function and checkers are modeled using a UVM-
based methodology. The Cache is a high-performance memory with high efficiency and low latency. The Cache 
design also handles the entire GPU Pipeline architecture synchronization functionality. A high-level test bench 
architecture diagram is shown below. 
 
 

 
Figure 7: L2 Cache Test Bench Environment 

 
When we started the evaluation of applying AI/ML, the Cache feature set and design development was completed 
and the test bench environment was considered mature and stable. The pass rate for the test bench was above 98%. 
Furthermore, the code and functional coverage was around 95%. A total of 10 regressions with and without the 
AI/ML solution were tried on the Cache block. We found significant improvement in verification results using 
AI/ML solutions as summarized below: 
 
 Exposed scenarios that are not captured as part of functional coverage (Figure 1). Some examples are: 

o Testbench failure #1: Constraint inconsistency failures 

o Testbench failure #2: Design SVA failures due to issues in the testbench UVM driver 

o Testbench failure #3: Scoreboard issues related to the checker 

o RTL failure: Design deadlock scenarios  

 Full insight into the input stimulus distribution such as,  
o Under-constraint vs. Over-constraint scenarios 

 
 Faster Coverage Closure 

o Achieved 95% functional coverage in 6 regressions vs. 10 regressions. Savings of 4 regressions and IT 
resources. 



 
Project B – Modified L2 Cache details 
 
In project B, we provide our observations using the AI/ML solution on a new Cache design. This was a time-critical 
project with a shorter runtime compared to other projects. When we ran random regressions daily without AI/ML 
technology enabled, we would see 2 to 3 design bugs a week.  At 4 to 5 weeks, we observed the feature bring-up and 
scoreboard model were becoming stable, and the random regression pass rates were nearly 98%. Encouraged by the 
positive impact of the AI/ML solution in project A, we decided to intercept this project at week 6 to enable AI/ML 
solution to reconfirm if it can provide additional value. We were truly impressed with the results of shift-left in bug 
discovery in this time-critical project, as shown in (Table 1, Figure 8). We summarize our observations as follows: 
 

 Early bug discovery (in both testbench and DUT) and quickly hitting rare corner bugs (Table 1, Figure 8)  
 Shift-left in functional coverage by 30% when coverage is greater than 90%. Like project A, we achieved 

the same functional coverage in 6-7 iterations with the AI/ML solution when compared to 10 iterations 
without the AI/ML solution. 

 A 10-15% savings of grid or compute resources (Figure 9) (explained later) 

Table 1: Bug rate using with and without AI/ML solution  
 
 
 
 
 

 
 
 
 
 
. 
 
 
 

 
 

(a)                                                                                                            (b) 
Figure 8: (a) Pass percentages (b) Bug rate with and without using AI/ML solution 

 

Week Pass % 
AI/ML 

Enabled? 

#  
Testbench 

bugs 

# 
RTL 
bugs 

Week 1 55% no 13 3 
Week 2 75% no 10 2 

Week 3 85% no 11 3 
Week 4 90% no 11 1 
Week 5 98% no 7 1 

Week 6 88% Yes 18 6 
Week 7 96% Yes 7 5 
Week 8 98.50% Yes 5 1 
Week 9 98.50% Yes 5 0 



         
 
  (a) default (w/o AI/ML)                                                                   (b) with AI/ML 
 

Figure 9: Total grid runtime per block over week. (a) Default 198K time units vs. (b) AI/ML 162K time units for the same coverage 
 
Ultimately, we expect ROI on adopting this new technology to help us reduce verification costs and improve 
productivity. To measure this quantitively, we compared the grid compute usage with and without using AI/ML for 
a block as illustrated in Figure 9. The total runtime of the simulation jobs per block was compared without (default) 
and with AI/ML, to achieve the same coverage goal as one of the cost metrics to highlight the magnitude of the 
savings achieved. Figure 9(a) shows the default requirement of 198K time units (area of the bar chart) versus the 
AI/ML solution requiring a total of 162K time units, a reduction of nearly 18%. Note that the default regression was 
conducted by automated scripts, while the AI/ML regressions were conducted by the custom ad-hoc scripts executed 
by multiple users. This explains the non-uniform usage in AI/ML regressions. 
 
Project C – Render Block details 
 
In project C, we present the impact of the AI/ML solution on the Render Block where we experimented with and 
without the AI/ML solution in a parallel setup on the same Block version. This block provides blending, color, and 
depth calculations in the graphics pipeline architecture. The number of color formats, depth formats, and title 
packing combinations with different register programming combinations make this design block very complex and 
very hard for the design verification team to cover all the scenarios. This block has approximately 350K coverage 
bins corresponding to various scenarios corresponding to different color formats, depth formats, and tile packing. 
Our constraints random test benches are designed appropriately to cover all the combinations, but that would need 
several months of back-to-back regressions to achieve acceptable code and functional coverage.  As we get close to 
the final project milestone to meet the coverage closure target, we needed to put in a lot of manual effort, such as 
tweaking constraints, to create certain directed test cases or to chain the delay profiles on each interface. All these 
efforts take a week or more to cover the remaining 200 to 500 bins, based on how good input stimuli are generated. 
 

Table 2: Code and Functional Coverage with and without AI/ML solution on Render Block  
 

Render 
Block 

Coverage Metric Default 
AI/ML 
Enabled 

Improvement with 
AI/ML 

Code 

Line 88064 89231 1167 
FSM 855 885 30 
Condition 356836 359019 2183 
Branch 66888 69931 3043 

          

Functional 

Cover Points 1757 1804 47 
Coverpoint bins 39628 39969 341 
Cross Coverage bins 305445 306859 1414 
Total Bins 347984 349661 1677 

 



After enabling AI/ML technology in random regressions for this block, we witnessed dramatic improvement or 
shift-left in functional coverage closure by 1.5 weeks. We observed that most of the complex bins which needed 
tweaking of constraints or delay profile automatically are now getting hit quickly. Consequently, we now need to 
spend very minimal effort (maybe for less than 100 bins) on directed /constraint tweaking or delay profile tweaking. 
Table 2 shows the coverage metrics with and without using the AI/ML solution.   Figure 6 shows the coverage 
acceleration with and without the AI/ML solution.  
 

IV. CONCLUSION 

In this paper, we focused on using an AI/ML solution for improving stimuli quality early in our project, thereby 
achieving faster testbench stabilization by discovering hard-to-hit testbench bugs due to under- and over-constraints 
and fixing them early on. Faster testbench stabilization early on has multiple benefits, such as 

 finding early design bugs which are less costly to fix,  
 reducing the manual effort required in writing directed test cases,  
 reducing the regression size,  
 removing redundant tests, 
 finding potentially omitted scenarios that may lead to bug escapes or coverage holes, 
 make the testbench conducive to faster functional coverage closure.  

We presented the verification impact of using the AI/ML solution on three projects. Then we showed how we can 
achieve improved productivity while reducing verification costs by adopting such technology early in our project 
cycle.  This productivity and savings were achieved without putting any extra manual effort to change or rewrite any 
part of our functional coverage models. 
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