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Abstract:  The paper discusses the role of state retention (SR) elements and strategies in optimising power consumption 

while ensuring quick system recovery.  By utilising IEEE 1801 standard, also known as Unified Power Format (UPF), SR 

can be effectively specified, modelled, verified and implemented coherently to ensure functional and electrical correctness 

under a wide range of operating conditions. 

Conventional SR techniques mostly involve implementation of underlying SR elements and system-level SR strategies that 

are potentially sub-optimal for evolving technologies and end applications.  Many of these evolving SR strategies for area and 

power efficient SR elements with lower-level i.e., device-level optimisations utilised in building such elements may impose 

additional functional and electrical boundary conditions.  Comprehensive handling of such boundary conditions is not 

supported in the current versions of power intent (PI) standards.   

In the upcoming version UPF 4.0, we propose to add additional syntactical features supporting scalable semantics of 

evolving advanced SR requirements and techniques for more complete power intent specification, consistent and coherent 

interpretation with seamless handling across EDA tools and flows.   

A detailed case study is provided demonstrating practical applications of SR strategies in low power designs. 

I. INTRODUCTION

As electronic systems evolve to meet the increasing demands for energy efficiency, especially in mobile and 

embedded devices, low power (LP) design techniques are critical for reducing both dynamic and static power 

consumption.  Standard techniques for realising functionally and electrically consistent LP design with user-

controllable power-versus-performance trade-offs include:   

• designing with suitable metal-oxide semiconductor (MOS) devices of appropriate gate threshold

• adaptive and static body biasing

• clock gating for sections of designs for periods of no activity

• frequency reduction to sections of designs for periods of low performance

• adaptive voltage and frequency scaling

• power gating.

Additional techniques that are needed to overcome the challenges due to the implementation of any of the 

aforementioned approaches include:   

• isolation of signals from switchable i.e., power gated domains to clearly defined safe states for avoiding

functional and power consumption issues in the receiving domains that remain powered-on

• state retention (SR) of memory elements in the switchable power domains

• level shifting for signals crossing between domains of incompatible supply voltage levels

• clock and reset domain crossing (CDC & RDC) techniques like clock and reset synchronisation

respectively.

Standardised power intent (PI) specifications like Common Power Format (CPF) and IEEE 1801 standard, also 

known as Unified Power Format (UPF) support the power gating and scaling related aspects.  One of the key 

challenges in power management is maintaining data integrity during power-down events viz. power shutdown and 

various gradations of sleep modes.  SR strategies, particularly the use of SR elements and methods, provide a solution 

by preserving critical state information even when the power supply to parts of the system is turned off.    

This paper explores the various SR techniques employed in low power, energy-aware systems, including the design 

and implementation of SR registers under power gated system modes, and state-saving mechanisms.  It discusses the 
role of SR elements and strategies in optimising power consumption while ensuring quick system recovery and 

minimal power overhead during power state transitions.  By utilising UPF, SR can be effectively specified, modelled, 
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verified and implemented coherently to ensure functional and electrical correctness under a wide range of operating 

conditions.  It delves into verification strategies for design with SR, such as analysis of various power states, checking 

data integrity across power down cycles, and ensuring seamless power state transitions in complex system-on-chip 

(SoC) designs. 

 
II. ADVANCED RETENTION CHALLENGES 

An example LP system, its power-aware (PA) verification setup, and the signal-level behaviour for the system are 

illustrated in Figure 1, Figure 2, and Figure 3 respectively [1][2][3].  They showcase a typical LP system, 

demonstrating the interactions between different power domains and the associated control signals that ensure proper 

state retention across power down cycles.  The verification flow integrates a PA simulation tool that supports 

simulating the more complete and fine-grained behaviour of the system under various power states:  exhibiting 

conservative behaviour by corrupting the states of the logic circuits under such power domains whose supplies are 

switched-off for minimising power consumption; and ensuring that state information of such switched off power 

domains can be preserved accurately, if specified appropriately.  Figure 1 illustrates an overview of the system 

architecture, highlighting the role of power gating, clock gating, and adaptive voltage scaling in managing dynamic 

and static power consumption/dissipation.  Figure 2 delves deeper into the verification process, where each power 

domain is evaluated for functional correctness during mode transitions, ensuring that isolation, level shifting and 
retention elements behave as expected in the presence of switched power supplies.  Figure 3 illustrates the signal-level 

behaviour, emphasising the interplay between clock, reset, and control signals during transitions between active and 

power down states.   

 
Figure 1.  Typical LP System [1] 

As illustrated in Figure 1 & Figure 3, the switchable domain PD_V4 associated with the supply net V4 supplies IP3 

requiring state retention.  State retention is enabled in the system by asserting the signal RET before the switch 

powering V4 is turned-off (by de-asserting Power Domain Enable) and eventually V4 becomes invalid.  The state D5 

encountered at the rising edge of RET signal is saved and retained during invalid V4 i.e., power-down state of IP3.  

Upon exit from power-down by asserting the Power Domain Enable, once V4 becomes valid and subsequently upon 

de-assertion of RET the saved/retained state D5 is restored.  However, the strategy allows a successful SR operation 

independent of the clock (CLK) and reset/preset (RSTZ_V4) control signal states during the period between the save 

and restore events, requiring underlying SR elements having the clock signal CLK gated internally with the retention 

control signal RET.  This allows clock tree activity when RET remains asserted without causing any malfunction 

including loss of retained state.  Such an implementation doesn’t pose any constraints on the system-level clock tree 
allowing its drivers to be powered-off to reduce power consumption or to share with other sections of the design that 

may require clock activity, though at the cost of retention element-level incremental power consumption and area 

overhead.  Such a system behaviour can be realised using a retention strategy representing an SR element of type 

single-control balloon-latch, both illustrated by the UPF specification in Code 1.  Note that while set_retention 
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specifies the system-level SR strategy at the current scope, the define_retention_cell specifies the underlying gate-

level abstraction of the individual SR element (not detailed herein). 

 

 

Figure 2.  Typical Power-Aware Verification Setup [1] 

  

Legend: 

V1, V2:  Primary power supplies 

V3, V4:  On-chip switched power supplies 

CLK:  Clock signal 

RSTZ:  Active low reset signal 

RET:  Active high state retention control signal 

ISO:  Active high isolation control signal 

D:  Input data to a state retention cell 

Q:  Output of a state retention cell 

RSTZ_V4:  Reset for the power domain PD_V4 corresponding to 

V4 

Figure 3.  Signal-Level Behaviour for an LP System [1] 

 

 

 

 

 

Conventional SR [1][2] techniques mostly involve straightforward simpler implementation of underlying SR 

elements, such as SR registers or flip-flops and system-level SR strategies that are effective in conventional design 

paradigms but are increasingly getting sub-optimal for evolving technologies and end applications.  An example of 

the signal-level behaviour of one such conventional SR technique is illustrated in Figure 4, involving a strategy (as 

shown in Code 2) using underlying retention elements having the clock signal CLK gated internally with the retention 

upf_version 3.1 

 

set_retention ret -domain PD_V4 -save_signal {RET posedge} \ 

-restore_signal {RET negedge} ... 

 

define_retention_cell -cells SR1 -clock_pin CLK -save_function {RET posedge} \ 

-restore_function {RET negedge} -power_switchable VDD -power VDD_RET \ 

-ground VSS 

 Code 1.  UPF 3.1 code specifying single-control balloon-latch type SR element  
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control signal RET, allowing clock tree activity when RET remains asserted without causing any malfunction including 

loss of retained state.  Such an implementation doesn’t pose any constraints on the system-level clock tree allowing 

its drivers to be powered-off to reduce power consumption, though at the cost of retention element-level incremental 

power consumption and area overhead.  However, as shown in Figure 4(ii), it requires the clock to be frozen at logic 

‘0’- level at the save & restore control events for the save and restore functions to operate successfully, the condition 
for the same is specified using save_condition and restore_condition options of set_retention as shown in Code 2. 

As semiconductor process nodes shrink and device architectures become more complex, conventional SR 

techniques struggle to meet the new demands for higher power efficiency, faster recovery times, and lower area 

overheads.  In this figure, the state of a SR register is maintained during power down, but the recovery time is relatively 

slow, and power consumption remains a concern due to the static nature of the control signals and activity on clock 

path.  Additionally, conventional techniques may not fully account for the intricate power domain crossings, leading 

to potential data integrity issues during power mode transitions. 

 
(i)  Reset Functionality                                          (ii) Retention Restore Functionality 

Figure 4.  Conventional SR Behaviour [1] 

 

 

 

 

 

 

 

 
 

Many of the evolving advanced SR strategies [1][2] aim to address these shortcomings by incorporating more 

sophisticated, area and power efficient SR elements with lower-level i.e., device-level optimisations utilised in 

building such elements.  These optimisations include the use of lower leakage transistors, improved retention 

mechanisms, and more dynamic control of retention elements based on real time power and performance needs.  

However, these improvements often may impose additional functional and electrical boundary conditions [1][2], such 

as stricter timing requirements for signal transitions, more complex interactions between power domains, and the need 

for tighter control over clock and reset signals during state and mode transitions.  An example of the signal-level 

behaviour of samples of such advanced SR techniques are illustrated in Figure 5 which for example provides a more 

fine-grained micro architectural-level trade-off.  Such advanced SR strategies can significantly reduce power 

consumption while maintaining fast recovery times by dynamically adjusting the retention control signals based on 
the system’s operational state. 

In Figure 5, the advanced SR technique leverages single-control baloon-latch retention strategy, where both the 

clock and reset signals are managed separately to ensure optimal power savings during periods of inactivity.  This 

approach allows the system to selectively power down specific regions while retaining critical data in key areas of the 

design.  For example, Figure 5(a) illustrates a strategy using underlying retention elements exposing the clock signal 

CLK, without any internal gating, thus imposing a constraint on the system-level clock tree to maintain a known state 

(logic level 0 in this illustration) when RET remains asserted to avoid loss of retained state.  However, such an 

upf_version 3.1 

 

set_retention ret -domain PD_V4 -save_signal {RET posedge} \ 

-restore_signal {RET negedge} -save_condition {!CLK} \ 

-restore_condition {!CLK} … 

Code 2.  UPF 3.1 code specifying a conventional SR behaviour in Figure 4 
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implementation requires additional system-level constraints with the benefit of low power and low area retention 

elements.  Figure 5(b) illustrates another more advanced strategy using an underlying retention element having no 

internal gating on the clock (CLK) path but with a specific circuit-level optimisation of the SR element that is resilient 

to operate with an undriven clock signal CLK by allowing the clock tree drivers to be powered-off during the low 

power mode, with more fine-grained power saving entitlement.  Unlike conventional methods, the advanced strategy 
adapts to varying power and performance demands, making it more suitable for modern applications with diverse 

operating conditions, such as mobile and embedded systems.  These strategies not only minimize power consumption 

during standby modes but also enable rapid recovery from power down states, thus ensuring that the system can 

resume full functionality quickly when needed. 

 

 
(i)  Reset Functionality                                          (ii) Retention Restore Functionality 

(a) Clock to stay low when RET is asserted 

 
(i)  Reset Functionality                                          (ii) Retention Restore Functionality 

(b) Clock to stay low when RET is asserted; Clock to stay low or undriven, due to driver whose power is off 

when SHUTOFF is asserted 

Figure 5.   Advanced SR Behaviour [1] 

As these advanced SR techniques evolve, they impose new challenges in terms of verification and implementation.  

The additional boundary conditions introduced by device-level optimisations require more granular control over SR 

elements, leading to increased complexity in specifying and verifying power intent, including fine grained 

microarchitectural optimisation and trade-off to keep the entire clock tree either powered-on or powered-off during 

the power down modes.  The upcoming UPF 4.0 aims to address these challenges by introducing new features and 
commands that allow for more detailed specification of retention behaviours, power domains, and the interactions 

0 or Undriven 0 or Undriven 
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between them.  These enhancements enable designers to model advanced SR strategies more effectively and earlier 

in the design cycle, ensuring that all functional and electrical constraints are met, even as power management 

techniques continue to evolve. 

 

III. LIMITATIONS OF EXISTING POWER INTENT STANDARDS 
Comprehensive handling of the boundary conditions imposed by the evolving advanced SR strategies discussed in 

the earlier section is not supported in the current versions of PI standards.  For example, the strategies shown in Figure 

4(i), Figure 5(a)-(i) & Figure 5(b)-(i) require reset (CLRZ) to take effect if asserted at the power-up event and the 

saved/retained state information to be lost.  Additionally, there are more nuanced conditions for successful save, 

restore and retention operations as illustrated: 

a) in Figure 5(a) requiring CLK to remain low through the entire period between save and restore events. 

b) in Figure 5(b) requiring CLK to remain low through the period between save event and power-down event,  

between power-up event and restore event; and CLK to either remain low or driven by a powered-off 

driver during the period between power-down and power-up events. 

Thus, most of the electrical and behavioural constraints on reset (CLRZ), set/preset, clock (CLK) signals of such SR 

elements and those related to the SR strategies, across different states of the related power domains (both primary and 

backup power domains) and states of the retention control signal (RET) are not specifiable in the current PI 
specification standards (UPF 3.1 and earlier).  They allow for checks only at save event, restore event and the period 

between power-down and power-up events.  This state-of-the-art causes either late finding of basic architectural and 

infrastructural specification violations or inappropriate (both inaccurate and incorrect) implementation details to 

evolve until very late in the design cycle as they cannot be comprehended in RTL stage due to PI limitations with 

significant specification and verification gap.  Existing synthesis and implementation tools too cannot comprehend 

and hence handle such requirements comprehensively due the aforementioned PI limitations. 

Typically, such functional behaviours can only be comprehended at a mature design stage post PA Gate-Level 

abstraction, mostly with PA simulations and some electrical behaviours require even transistor-level simulation like 

Analog and Mixed-Signal (AMS) co-simulation which can be prohibitively costly or even impractical to be performed 

due to the complexity and computational costs involved in performing such simulation especially starting at pretty 

late stages of design potentially resulting in escaped design issues and silicon bugs. 
 

IV. ADVANCED RETENTION HANDLING IN PROPOSED UPF 4.0 

In the upcoming version UPF 4.0 [4], we propose to add additional syntactical features supporting scalable semantics 

of evolving advanced SR requirements and techniques for more complete power intent specification, consistent and 

coherent interpretation with seamless handling across EDA tools and flows.  These features include semantic and 

syntactical extensions to existing retention related commands viz. define_retention_cell, map_retention_cell, & 

set_retention supported by introducing predefined command options e.g., new predefined conditions to identify 

system states viz. save_event_condition, restore_event_condition, restore_period_condition, & 

power_down_period_condition.  The options save_condition, restore_condition, & retention_condition are made 

legacy and cannot be specified consistently and coherently with newer options.  A new option async_set_reset_effect 

is introduced to specify how the reset/set signals affect the output and retained value during the restore period, while 

having no effect in normal operation.  Note that currently all these enhanced and new options are only for the purposes 
of verification and have no explicit or unique effect on the synthesis and implementation flows.  The correctness of 

implementation depends on the right map_retention_cell & define_retention_cell specified for SR strategies as 

always.  

Basic retention register operation and modelling that are useful in describing the simulation semantics for 

set_retention command is shown below: 

 

 

 

 

 

 
 

 

 

 

 

upf_version 4.0 

 

set_retention retention_name   -domain domain_...  [-save_signal {logic_net 

<high | low | posedge | negedge>} \ 

-restore_signal {logic_net <high | low | posedge | negedge >}]  [-

save_event_condition {boolean_expression}]  \ 

[-restore_event_condition {boolean_expression}] [-powerdown_period_condition 

{boolean expression}] \ 

[-restore_period_condition {boolean expression}]  

[-async_set_reset_effect <ignored | retained_value | output_value>] 

  … [-save_condition {boolean_expression}] [-restore_condition 

{boolean_expression}]   

[-retention_condition {boolean_expression}]  
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The save_event_condition gates the save event, defining the save behaviour of the register.  The register contents 

are saved when the save event occurs and the save_event_condition is True.  The retained value shall be the register’s 

value at the time of the save event when save_event_condition evaluates to True.  For edge-sensitive save, the save 

event is the rising or falling edge of the save_signal at the specified edge; for level-sensitive save, the save event is 
the trailing edge of the save_signal.   

The restore_event_condition gates the restore event from triggering the restore operation of the register.  The 

register is restored when the restore event occurs and the restore_event_condition is True.  The retained value is 

transferred to the register on the restore event when restore_event_condition evaluates to True.  The restore event is 

the rising or falling edge of an edge-triggered restore_signal or the leading and trailing edges of a level-sensitive 

restore_signal.  In addition, in the case of a level-sensitive restore, the restore operation is continuous throughout the 

restore period, taking the value of the async_set_reset_effect option into account.   

The restore_period_condition also gates the restore operation.  The restore operation occurs continuously during 

the entire restore period.  The restore_period_condition shall be TRUE throughout the entire restore period; otherwise, 

the restore operation will fail, and the retention element will be corrupted.  If the restore_period_condition is not 

specified, then the restore operation is not gated.   

The powerdown_period_condition defines the conditions under which the retained value is maintained when the 
domain power is OFF.  If the powerdown_period_condition is specified, it shall evaluate to TRUE the entire time that 

the domain’s primary power is OFF for the value of the state element to be retained.  If the 

powerdown_period_condition evaluates to FALSE and the primary supply is not NORMAL, the retained value of the 

state element is corrupted, else the retained value is not affected by this option.  The driver supply of any pin listed in 

the powerdown_period_condition shall be at least as on as the retention supply of the retention strategy.  

The save_event_condition, restore_event_condition, restore_period_condition and powerdown_period_condition 

shall only reference the predefined name UPF_GENERIC_CLOCK, UPF_GENERIC_ASYNC_SET_RESET, or 

logic nets or ports rooted in the current scope. 

For edge-triggered flip-flops, UPF_GENERIC_CLOCK represents a signal whose rising edge triggers the register 

to load data.  For level-sensitive latches, this is a signal whose high value enables the latch.  

UPF_GENERIC_ASYNC_SET_RESET is an expression derived from the set and reset inputs of the flipflop as 
following: 

• (set signal normalized to active high) || (reset signal normalized to active high) 

• This expression is TRUE when either the set or reset signal is active 

For improving the ease of strategy definition, a new option applies_to is introduced as a filter to restrict the strategy 

to apply only to state elements of a given type viz. [<flop | latch | any>]. 

 

V. CASE STUDIES AND DISCUSSION 

This case study demonstrates some practical applications of SR strategies in LP designs highlighting design trade-

offs that enable the optimisation techniques to minimise area and power overhead while maintaining rapid recovery 

of system state.  The clock and reset/set behaviour dependencies on the retention functionality for single-control and 

dual-control SR elements are discussed.   
 

A. Single-Control Retention  

A single-control SR element has just one control signal to indicate whether the register is operating in normal 

mode or retention mode.  In addition to the standard RTL defined clock (CLK), data (D), output (Q), set (SET)/reset 

(RESET) ports, single-control SR registers have an additional retention control port that is specified in the 

set_retention command.  In this case study RETN is defined as the active low retention control port.  A typical 

retention sequence is as follows: 

• Optionally stop the clock at a specified state (CLK) 

• Assert the retention control signal (RETN) 

• Save the value in the flipflop 

• Power-down 

• Power-up 

• Restore the saved value 

• De-assert the retention control signal 

In addition, it is recommended to have the clock remain in its inactive state and that the circuit isolate the outputs 

of the domain before powering down, to prevent unknown values from propagating from the powered-down domain 
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to the inputs of powered-up domains.  A level-sensitive control signal should be used to specify the restoration of Q 

at power-up (@pwrup); while an edge-triggered control signal is specified if Q value requires to be restored at the 

end of the retention cycle (@retn).  Some retention cells require the clock or reset to be held at a certain value 

during specific intervals of the retention period.  These requirements can be specified using various condition 

options in the set_retention command.  If any of these conditions are false at any time during the entire interval 
(level sensitive), or at the edge (edge sensitive), then the save or restore operation will fail, and the retained value 

will be set to x.  Figure 6 illustrates the behaviour of the retention flipflop under various save/restore conditions, in 

which UPF_GENERIC_CLOCK is present, to allow the user to model the retention behaviour with respect to the 

state of the clock.  The UPF specification for each of these variants are listed below. 

 

Figure 6.  Single-Control Retention:  Clock Behaviour [4] 

a) Clock ignored during RETN active:  

No save_event_condition, restore_event_condition or restore_period_condition present in the command. 

b) Clock must be low at the save and restore events:  

-save_event_condition {!UPF_GENERIC_CLOCK} -restore_event_condition 

{!UPF_GENERIC_CLOCK} 

c) Clock must be low at save event and restore events, and during the restore periods: 

# The restore_period_condition applies to both the restore event and restore period  

-save_event_condition {!UPF_GENERIC_CLOCK} -restore_period_condition 

{!UPF_GENERIC_CLOCK} 

d) Clock must be low during save and restore events, and during restore and power-down periods: 

-save_event_condition {!UPF_GENERIC_CLOCK} -restore_period_condition 
{!UPF_GENERIC_CLOCK} -powerdown_period_condition {!UPF_GENERIC_CLOCK} 

e) Clock must not be high during save and restore events, and during restore and power-down periods: 

-save_event_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z}  

-restore_period_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z} 

-powerdown_period_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z} 

f) Clock must be low at save and restore events and during restore periods, but not high during power-down 

period: 
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-save_event_condition {!UPF_GENERIC_CLOCK} -restore_period_condition  

{!UPF_GENERIC_CLOCK} -powerdown_period_condition {UPF_GENERIC_CLOCK==0 || 

UPF_GENERIC_CLOCK==Z} 

Figure 7 shows the retention behaviour for various values of async_set_reset_effect.  In this figure, reset is active 

during the restore period after power-up.  The figure shows the value of Q during the restore period, which changes 
depending on the value of async_set_reset_effect.  The UPF specification for each of these variants are listed below. 

 

Figure 7.  Single-Control Retention:  Reset Behaviour [4] 

a) Reset is ignored during the restore period:   

-async_set_reset_effect ignored 
b) Reset affects the retained value and therefore the output value during the restore period: 

-async_set_reset_effect retained_value 

c) Reset affects the output value during the restore period:  

-async_set_reset_effect output_value 

B. Dual-Control Retention  

A dual-control SR element has one signal to indicate “save”, and a different signal for “restore”.  When neither 

control signal is active, then the register acts normally.  In addition to the standard RTL defined clock (CLK), data 

(D), output (Q), set (SET)/reset (RESET) ports, dual-control SR registers have two additional retention control ports 

viz., SAVE & RESTORE that are specified in the set_retention command.  A typical retention sequence is as 

follows: 

• Optionally stop the clock at a specified state (CLK) 

• Save the state by asserting SAVE signal 

• De-assert SAVE signal 

• Power-down 

• Power-up 

• Restore the saved value by asserting RESTORE signal 

• De-assert the RESTORE signal 

Figure 8 illustrates the behaviour of the retention flipflop under various save/restore conditions, in which 

UPF_GENERIC_CLOCK is present in those conditions.  The UPF specification for each of these variants are listed 

below. 
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Figure 8.  Dual-Control Retention:  Clock Behaviour [4] 

 
a) Clock ignored: 

No save_event_condition, restore_event_condition or restore_period_condition present in the command 

b) Clock must be low at the save and restore events: 

-save_event_condition !UPF_GENERIC_CLOCK -restore_event_condition UPF_GENERIC_CLOCK 

c) Clock must be low at the save and restore events, and during the restore period: 
# The restore_period_condition applies to both the restore event and restore period: 

-save_event_condition !UPF_GENERIC_CLOCK -restore_period_condition 

!UPF_GENERIC_CLOCK 

d) Clock must be low at the save and restore events, and during the restore period and during the power-down 

period:  

-save_event_condition !UPF_GENERIC_CLOCK -restore_period_condition !UPF_GENERIC_CLOCK 

-powerdown_period_condition !UPF_GENERIC_CLOCK 

e) Clock must not be high at the save event and during the restore and power down periods:  

-save_event_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z}  

-restore_period_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z}  

-powerdown_period_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z} 

f) Clock must be low at the save event and during the restore period, but not high during the power-down 
period: 

-save_event_condition !UPF_GENERIC_CLOCK -restore_period_condition !UPF_GENERIC_CLOCK 

-powerdown_period_condition {UPF_GENERIC_CLOCK==0 || UPF_GENERIC_CLOCK==Z} 

 

  Figure 9 shows the behaviour when reset is active both after power-up before RESTORE is active, and after power-

up during the restore signal active.  For case (a), when RESTORE is inactive, the RESET signal is always obeyed, 

since the flipflop is in normal mode.  However, when RESTORE is active, then RESET is ignored, since 

async_set_reset_effect is set to ignored.  In the second and third cases (b) & (c), when the flipflop is in restore 

mode, the async_set_reset_effect option takes effect.  The signal Q_ret in the figures below represent the actual 
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saved value in the circuit.  For performance reasons, simulators may choose to save the value of Q at the save_event 

(edge sensitive) or the trailing edge of the save_signal (level sensitive).   

 

Figure 9.  Dual-Control Retention:  Reset Behaviour [4] 

VI. CONCLUSION 

This paper presents proposed syntactic and semantic enhancements to existing UPF commands to support evolving 

advanced SR strategies.  It throws light on some insights how SR strategies can be effectively implemented to balance 

energy efficiency, system performance, and data integrity, making it an essential component of modern LP design 

flows.  It presents recommendations on best practices for designing and verifying SR strategies in the current, 

continuously evolving and future energy-aware electronic systems. 
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