SYNoPSys 2024 AMDZIN

Silicon to_Software" DESIGN AND VERIFICATION ™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Extending the RISC-V Verification Interface
for Debug Module Co-Simulation

Lee Moore, Aimee Sutton, Synopsys Inc.
Michael Chan, Ravi Shethwala, Richa Singhal,

Advanced Micro Devices Inc.

SYSTEMS INITIATIVE

Agenda

* What is the RISC-V Verification Interface (RVVI)?
* What is a debug module?

 AMD’s verification challenges
* Random entry and exit to/from debug mode
 Verification of debug module abstract commands

* Proposed changes to RVVI
* debug_mode signal
* debug interface

* Benefits of adopting RVVI

RISC-V Processor Verification

Basic DV environment architecture: / \
* RISC-V processor RTL and memory 4
: SYNOPSYS
* Tracer to extract DUT state for A CA TR
verification o ocsor RTL —
and memory Scoreboarding
* Processor reference model N T
e Testbench component for K /
Testbench

scoreboarding and checking

/P DESIGN AND VERIFICATION ™
DIOF]
X - NNNNNNNNNNNNNNNNNNNNNNN

- \‘7\

RISC-V Processor Verification using RVVI

* RVVI = RISC-V Verification Interface
e https://github.com/riscv-verification/RVVI / \

* Open stan_dard: result o_f - SYNOPSYS
collaboration between industry and : / ImperesFP
Model

open-source N 5
e Standardizes communication Processor RTL i [_RwI-API_ |
between testbench and RISC-V VIP and memory = | Synopsys

ImperasDV

e RVVI-TRACE: interface between tracer \

and testbench K Testbench /

* RVVI-API: interface between RISC-V
verification component and reference
model

/P DESIGN AND VERIFICATION ™
il e
~— - NNNNNNNNNNNNNNNNNNNNNNN

https://github.com/riscv-verification/RVVI

RVVI-TRACE

rvvi-trace

Specifies information needed for comprehensive processor DV

Tracer extracts this info and sends it to the testbench
Defined as a SystemVerilog interface

Includes functions for handling asynchronous events

Wait for interrupt (interrupt enabled)

valid

trap

order 77 n+1

pc_rdata 1000h

csrimepc] 1004h

csr_wb[mepc] 7

net_push() / interrupt=1 \ / interrupt=0 \

DESIGN AND Q;;N ™

B AVA Ry =}

CONFERENCE AND EXHI BITION

RISC-V Debug Module

* Debug module provides visibility into
state of core to enable debug of
hardware and software

* Debug module can put the core into a

halted state
* read and write registers and memory
using abstract commands
e execute arbitrary programs

Debug Host

Debugger
(eg. gdb)

RISC-V Platform

Debug Module

Debug Module (DM)

reset/halt
control
abstract
commands

Program

RISC-V Core

Hardware Thread | » '
L]

Debug Mode

E Hardware |
v Trigger
: Module

.............

' Buffer (4B-64B) + Bus
L]

Lyw
- -

DESIGN AND \Q;;N ™~

DVGCON

RISC-V Processor + Debug Module Verification

* Verification goal: /) \
« debug mode entry / exit generated using |) [{S‘QUPFSPXSJ
constrained-random stimulus AMDZA]| Rsey Reference
* GPR reads and writes are carried out Debug ey MicroBlaze VI <
correctly using abstract commands Viodule o g | S\R;\l;:;/;: Is@]
* arbitrary programs are executed correctly . - \In'{peraslév
using the program buffer
K Testbench /

~

~

/ > DESIGN AND VERIFICATION ™
. ‘ 'a ~—
el
~a_ =t ~— \ NNV VNNV N NN NN L UL L N VNN N NN\ T T T~ T T CONFERENCE ANDEXHIBITION

Debug Mode Verification challenges

Recognizing
Debug Mode
entry and exit

Verification of
Debug Module
abstract
commands

Recognizing Debug Mode entry/exit (1)

* Problem:
* haltreq signal asserted randomly during program execution
* debug program instructions injected directly into pipeline
* impossible to determine whether or not an instruction is being retired in

DEbug Mode debug mode?
g[instruction %(addi)W %V%(auipc)W / %V%(lui)W
ok | L L4 [L] | [
valid [\ I 7~
g order X n ¥ W74 nel ¥ 74 n+2 X7
g pc_rdata 77§ 1000h X7/ 7177777/ dont care ¥/ 70777 1004h ¥
csrldpc] 077)_1004h X7 A%
| csr_wbldpc] 2 1% Q22 Y Q222 1%
B[net_push() [haltreq=1\ [haltreq=0 \

DESIGN AND \Q;;N ™~

DVGCON

CONFERENCE AND EXHIBITION

Recognizing Debug Mode entry/exit (2)

* Solution: debug _mode signal added to RVVI-TRACE

* Asserted by tracer for every instruction retired in Debug Mode

Debug Inject Mode handling (haltreq)

4 [instruction %
@ Z

rvvi-trace

E[net_push() / haltreq=1 \ / haltreq=0 \

Verifying abstract command execution (1)

* Problem: / \\

* Verification environment has no N {S\/HUPS\/?

visibility of the interface between AMDZU L el
debug module and processor - MicroBlaze V[l Model)

* Reference model has the Module [0 orocessor kil Il = | (_RvVI-APL]
information needed (e.g. register and memory E SYNoPSYs'
values) to verify abstract \) ._ImperasDV
commands

K Testbench /

* Changes to RVVI and ImperasDV

are required

~

~

V : // ' Fa ¥ Ny \ ES! "RIEICATION ™
~— - \\\ R AT A LR R R R R R R DR C R 0 T 0 0 e et e S

Verifying abstract command execution (2)

e Solution: interface dm;
* Debug module interface added to ire clk; // Interface clock
RVVI-TRACE wire rd; /7 read
* Tracer is updated to inform wire wr; // write
testbench about read/write wire [31:0] address;
accesses to debug module wire [31:0] data;
registers

.) // Storage for DM registers
* DM registers modeled in the store i+ [(xLEN-1):0] store [127:0]:

array

endinterface

DESIGN AND VERIEICATIO

Future work

e Support other abstract commands
* quick access
¢ aCcess memory

* Update the public RVVI standard

Benefits of adopting RVVI

* RVVI-TRACE:

* tracer requirements are known upfront
* enables re-use in tracer

* enables use of RVVI-compliant RISC-V verification solutions
* e.g. Synopsys ImperasDV, riscvISACOV (functional coverage)

* benefit from experience of others == best practices

* RVVI-API:

* requirements for processor verification are specified
* enables the creation of reusable RISC-V processor verification solutions

2024

DESIGN AND VERIEICATION™

Questions

* Thank youl!

Aimee Sutton aimees@synopsys.com

Lee Moore moore@synopsys.com

Michael Chan, Ravi Shethwala, Richa Singhal

mailto:aimees@synopsys.com
mailto:moore@synopsys.com

