
Extending the RISC-V Verification Interface
for Debug Module Co-Simulation

Lee Moore, Aimee Sutton, Synopsys Inc.
Michael Chan, Ravi Shethwala, Richa Singhal,

Advanced Micro Devices Inc.

Agenda
• What is the RISC-V Verification Interface (RVVI)?
• What is a debug module?
• AMD’s verification challenges
• Random entry and exit to/from debug mode
• Verification of debug module abstract commands

• Proposed changes to RVVI
• debug_mode signal
• debug interface

• Benefits of adopting RVVI

RISC-V Processor Verification

Basic DV environment architecture:
• RISC-V processor RTL and memory
• Tracer to extract DUT state for

verification
• Processor reference model
• Testbench component for

scoreboarding and checking
Testbench

Tr
ac

er

Processor RTL
and memory Scoreboarding

and Checking

ImperasFPM
RISC-V Reference

Model

RISC-V Processor Verification using RVVI
• RVVI = RISC-V Verification Interface

• https://github.com/riscv-verification/RVVI

• Open standard: result of
collaboration between industry and
open-source
• Standardizes communication

between testbench and RISC-V VIP
• RVVI-TRACE: interface between tracer

and testbench
• RVVI-API: interface between RISC-V

verification component and reference
model

Testbench

Tr
ac

er

Processor RTL
and memory

RV
VI

-T
RA

CE

RVVI-API

ImperasDV

ImperasFPM
RISC-V Reference

Model

https://github.com/riscv-verification/RVVI

RVVI-TRACE
• Specifies information needed for comprehensive processor DV
• Tracer extracts this info and sends it to the testbench
• Defined as a SystemVerilog interface
• Includes functions for handling asynchronous events

RISC-V Debug Module
• Debug module provides visibility into

state of core to enable debug of
hardware and software

• Debug module can put the core into a
halted state
• read and write registers and memory

using abstract commands
• execute arbitrary programs

RISC-V Processor + Debug Module Verification

Testbench

Tr
ac

er

Processor RTL
and memory RV

VI
-T

RA
CE

RVVI-API

ImperasDV

Debug
Module

• Verification goal:
• debug mode entry / exit generated using

constrained-random stimulus
• GPR reads and writes are carried out

correctly using abstract commands
• arbitrary programs are executed correctly

using the program buffer

ImperasFPM
RISC-V Reference

Model

Debug Mode Verification challenges

Recognizing
Debug Mode
entry and exit

Verification of
Debug Module

abstract
commands

Recognizing Debug Mode entry/exit (1)

• Problem:
• haltreq signal asserted randomly during program execution
• debug program instructions injected directly into pipeline
• impossible to determine whether or not an instruction is being retired in

Debug Mode debug mode?

Recognizing Debug Mode entry/exit (2)
• Solution: debug_mode signal added to RVVI-TRACE
• Asserted by tracer for every instruction retired in Debug Mode

Verifying abstract command execution (1)

• Problem:
• Verification environment has no

visibility of the interface between
debug module and processor
• Reference model has the

information needed (e.g. register
values) to verify abstract
commands
• Changes to RVVI and ImperasDV

are required

Testbench

Tr
ac

er

Processor RTL
and memory RV

VI
-T

RA
CE

RVVI-API

ImperasDV

Debug
Module

ImperasFPM
RISC-V Reference

Model

Verifying abstract command execution (2)

• Solution:
• Debug module interface added to

RVVI-TRACE
• Tracer is updated to inform

testbench about read/write
accesses to debug module
registers
• DM registers modeled in the store

array

interface dm;

wire clk; // Interface clock
wire rd; // read
wire wr; // write
wire [31:0] address;
wire [31:0] data;

// Storage for DM registers
bit [(XLEN-1):0] store [127:0];

endinterface

Future work

• Support other abstract commands
• quick access
• access memory

• Update the public RVVI standard

Benefits of adopting RVVI

• RVVI-TRACE:
• tracer requirements are known upfront
• enables re-use in tracer
• enables use of RVVI-compliant RISC-V verification solutions

• e.g. Synopsys ImperasDV, riscvISACOV (functional coverage)
• benefit from experience of others == best practices

• RVVI-API:
• requirements for processor verification are specified
• enables the creation of reusable RISC-V processor verification solutions

Questions

• Thank you!

Aimee Sutton aimees@synopsys.com
Lee Moore moore@synopsys.com

Michael Chan, Ravi Shethwala, Richa Singhal

mailto:aimees@synopsys.com
mailto:moore@synopsys.com

