

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

Survey of Machine Learning (ML) Applications in Functional Verification (FV)

Dan Yu, Harry Foster, Tom Fitzpatrick

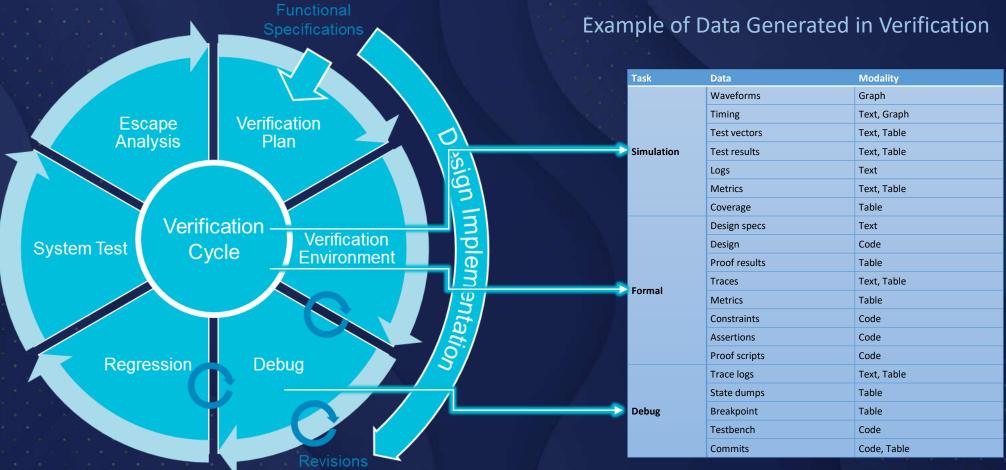
Motivations

Need comprehensive overview on ML for FV

Insufficient attention on data problem

Unaddressed challenges in production environment

Abundance of Data in FV



Verification is a Natural Playground of Machine Learning

Problem Formulation

Well defined inputs & outputs

Baseline Solution

Rule-based or manual

Data Availability

from design & verification workflow

How can ML be leveraged to extract value out of data?

Application ML Has Been Studied in Every Corner of Verification

Requirement Engineering: Spec Translation

Check if ack arrives 3 clocks after a request

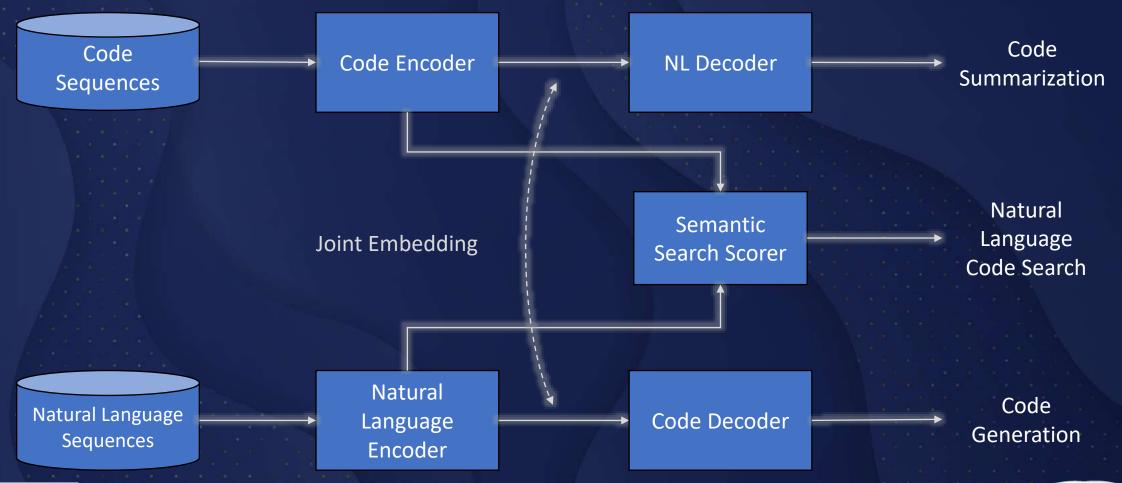
Translation Engine

assert property (@(posedge clk) req |-> ##3 ack);

Static Analysis: Smell Detection & Quality Assessment

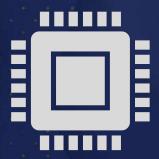
Code smell: malformed code indicating bigger problem, e.g. a big module without submodules

Static Analysis: Code Summarization, Generation and Semantic Search



Simulation Acceleration: Approximation with ML models

universal approximation theorems

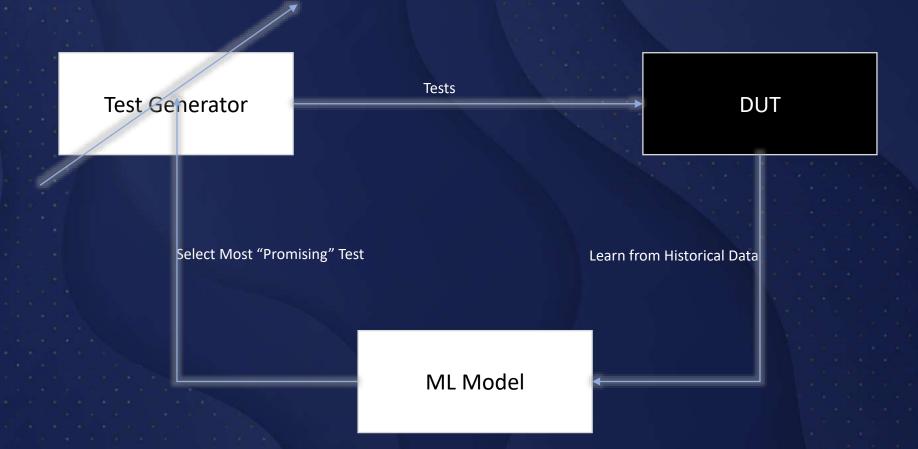


IC Design Simulation

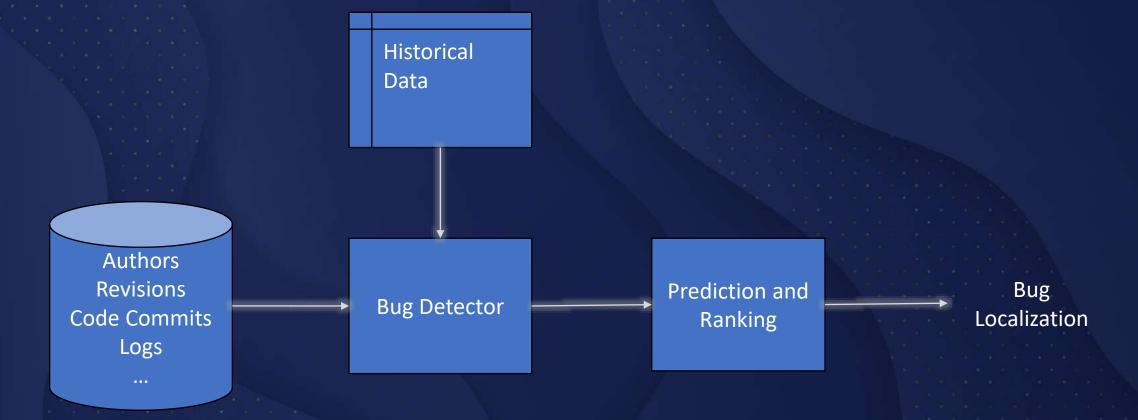
ML Model (Large-scale Highlyparallel Model)

Al Accelerator (Highly-parallel computation)

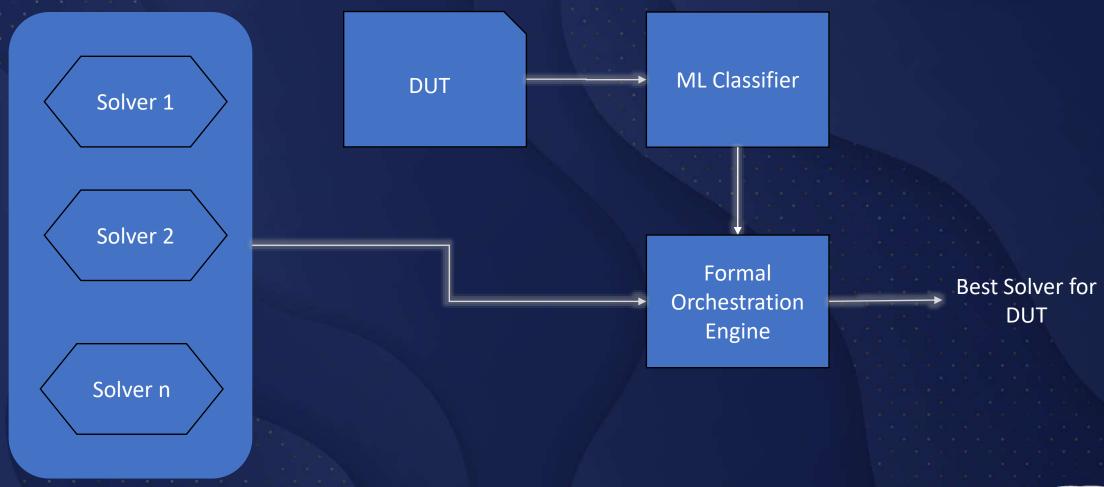
Coverage Closure: Test Generation



Bug Detection and Localization



Formal Orchestration



Most Research Restricted by Data

1

Data Quality: More efforts spent on preparing data for research work

- Most open-source data are not ready to experiment
- Lack of complete lifecycle verification data

2

Repeatability: Results are not easily verifiable or directly comparable without the same data

 Many proprietary / undisclosed design data used to test performance 3

Data Volume: Scale of datasets too small to train advanced ML models

 Individual efforts limits the useable dataset size for the experiments

Scarcity of Quality Data

Open-source Data has Great Potential, Proceed with Caution

Verilog		
VHDL		
SystemVe	rilo	g

19,861
16,352
3 212

Verilog	59
VHDL	11
SystemVerilog	25
Other	16

Verilog 470 VHDL 467 Other 30+

OSS Projects Hosted 10+ mln LoC

Data Preparation

Gather / Assess / Cleans / Labeling / Transform / Enrich / Validate

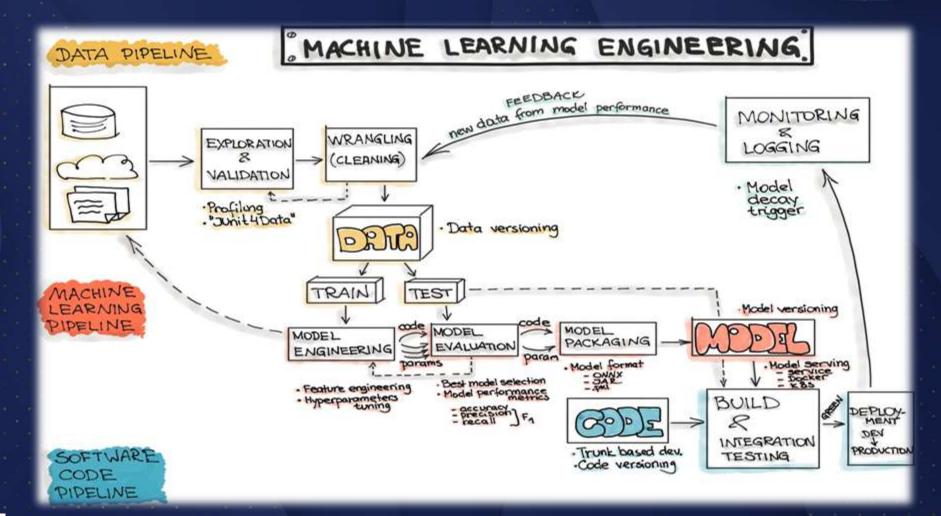
ML Useable Verification Data

ML Model's Generalizability

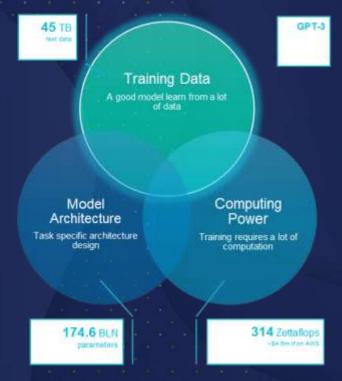
How does a model perform on new data never seen before?

Design 1	Design 2	Design 3	New Design 4	
				"Rote Learning"
95%	97%	95%	29%	
				Generalizable Mode
95%	93%	97%	94%	
	95% 95%	Design 1 Design 2 95% 97% 95% 93%	Design 1 Design 2 Design 3 95% 97% 95% 95% 93% 97%	Design 1 Design 2 Design 3 New Design 4 95% 97% 95% 29% 95% 93% 97% 94%

Scalability: Data Centric MLOps

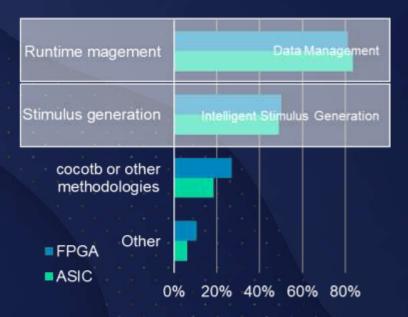


ML for Verification: What's the Next?



Big Data & Large (Language) Model

Complex Relationships & Graph Learning



Python & Data Analytics w/ ML

Contact

Dan Yu, Harry Foster, Tom Fitzpatrick

Digital Verification Technology
Siemens EDA
{dan.yu, harry.foster, tom.fitzpatrick}@siemens.com

