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Abstract- 
Achieving rapid and efficient functional coverage closure remains a persistent challenge for large unit and cluster 

testbenches. Traditional coverage report generation and analysis methods are often slow, resource-intensive, and can delay 
verification closure. This paper introduces "Low Weight Coverage", a novel, cost-effective, and adequate methodology to 
accelerate functional coverage closure while maintaining quality. The proposed model addresses key challenges in existing 
coverage analysis, offering benefits on multiple fronts including improved stimulus quality, testcase ranking, and better 
submission quality, thereby enhancing the overall verification efficiency. 

I.   INTRODUCTION 
In the early stages of the project lifecycle, coverage coding and analysis often receive low priority due to the time-

intensive nature of report generation. For large unit and cluster testbenches, coverage reports may take up to a week 
to generate, leading to resource wastage and increased turnaround time for report generation, review, feedback 
collection, and corrective measures. Furthermore, enabling coverage in both design and testbench environments often 
necessitates the inclusion of extensive new coverage code, particularly from reusable design and verification IPs, 
which complicates and prolongs the compilation process. An additional challenge lies in the inefficient extraction and 
analysis of coverage contributions on a per-testcase basis. 

II.   LOW WEIGHT COVERAGE (LWC) METHODOLOGY  
   A. LWC model overview 
   The Low Weight Coverage (LWC) model aims to streamline the coverage process by integrating counters which we 
refer to as ‘stat counters’ implemented within the testbench and RTL, along with a post-regression parsing script as 
illustrated in Figure 1. Each ‘stat counter’ in the LWC model corresponds to a ‘coverage item’ and is incremented 
when a corresponding ‘coverage event’ occurs. This approach is analogous to invoking the ‘sample’ function within 
a functional cover-group. At the end of test all the stats (coverage scenarios) and the corresponding counter values are 
printed in a log file. 
   For example, consider number of ‘valid’ transactions. Some tests may not generate any ‘valid’ transactions, which 
can be acceptable. However, we expect a reasonable number of ‘valid’ transactions across an entire regression. This 
is the rationale behind using a counter instead of a functional cover-point.  
This mechanism measures “real stimulus quality” rather than indicating what is covered and not. This allows us to 
assess whether a regression meets its ‘aggregate’ coverage goals without needing a coverage build/compile. 
After a regression completes, the ‘lwc_post_regression_parser’ reads the stat counter values of each test, calculates 
the average for each stat across all tests, and compares them against expected thresholds provided in a separate file. 
   The “low weight” jargon comes from the idea that this is a cheap way of getting coverage due to its zero impact on 
compile time, very low runtime impact, instant coverage report generation, and because it doesn’t provide all the 
features that functional coverage provides. In contrast, functional coverage enabled compilation, test runtime, and 
report generation can be much slower. This is common in large simulation enviroments containing multiple instances 
of RTL modules, UVM environments, shared design and VIPs where substantial coverage code is included.  
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Figure 1. Low weight coverage flow 
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B. How are LWC counters Implemented? 
When we decide to add a new stat/ cover item, we first add it to the ‘stats_list.csv’. Figure 2 describes this file 

containing columns ‘lwc_counter_name’, ‘min_threshold’, and ‘max_threshold’. 
 

 
 

 
 

First three scenarios from Figure 2 are implemented in the testbench and the remaining four in the RTL. 
I) Testbench stat counter implementation: 
Testbench contains a class object “stats_utils” which will read the ‘stats_list.csv’ file, load the stat counter names  

marked TB into an associative array, and then initialize them to 0. During runtime, the counters can be incremented 
from any part of the testbench. TB components increment a stat counter by calling the “increment_stats” function 
when the corresponding scenario occurs. This is like calling a functional cover-group’s ‘sample’ function when the 
scenario to be covered is detected. Stat counters can also be incremented from re-usable VIPs either with direct access 
to stats_utils or via callbacks depending on the level of support available. At end of the test, all stat names and values 
are printed in “stats.log” (Figure 3). 
 

 
 
 

 
 

Code snippet in Figure 4 show the definition of “stats_utils” class and Figure 5 shows the way ‘increment_stats’ 
function is called. NOTE: All the code snippets provided in this paper have been edited to convey the intent concisely.  

 

        
 
 

Figure 2. stats_list.csv 
 

Figure 4. stats_utils class definition                                                 Figure 5. Scoreboard implementation  
 

COVER_INFO_TB : Number of requests that saw a decerr =   600 
COVER_INFO_TB : uvm_test_top.top_env.axi_env_0.axi_monitor : Number of AXI write requests = 100 
COVER_INFO_TB : uvm_test_top.top_env.axi_env_1.axi_monitor : Number of AXI write requests = 150 

 
 Figure 3. stats.log output in the test results directory 



II) RTL stat counter implementation: 
The coverage scenarios are implemented in the RTL as non-synthesizable counters. These counters can be 

incremented from a module, interface, or reusable design IPs. The RTL stat counter values are printed in the same 
‘stats.log’ file as described in Figure 6. 

 
 
 
 
 
 
Figure 7 and Figure 8 describe RTL counters implemented in a module and a shared IP respectively. 
 

      
 
 
 

RTL uses the macro “PRINT_COVER_STAT” shown in Figure 9 to print the stats to a file. 
 

 
              
 
                 

When a test finishes, its simulation results directory will contain a ‘stats.log’ file. This shows the amount of coverage 
achieved by that test. Once the entire regression is done the ‘lwc_post_regression_parser’ reads each test’s “stats.log” 
and computes the ‘average’ for each stat across the regression. This is compared against the min and max thresholds 
in “stats_list.csv”.  
 
In the ‘stats.log’ example output, “FIFO full event occurred” being 1 only indicates that this instance of the test filled 
up the FIFO but that doesn’t necessarily mean the overall coverage expectations have been met.  
Let’s say a regression running 1000 tests saw an average count of 60 (number of times full event occurred) for 
“u_fifo_0 : FIFO full event occurred” and 30 for “u_fifo_1 : FIFO full event occurred”. 
“u_fifo_0” falls in the threshold range since “min_threshold=50” and “max_threshold=100” and hence has met the 
coverage goals. However, “u_fifo_1” count of 30 falls outside the threshold range of “min_threshold=100” and 
“max_threshold=200”. This could indicate that the stimulus is lacking, and the design isn’t properly tested. 
The user must set the thresholds to ‘reasonable’ and appropriate values for each stat/cover scenario. 
 
 
 
 

Figure 7. Cache controller counter implementation 
 

Figure 8. FIFO design IP counter implementation 
 

Figure 9. Macro that writes counter values to the file 
 

COVER_INFO_RTL : u_top.u_cache_top.u_cache_ctrl : Number of Cache Read hits                    = 115 
COVER_INFO_RTL : u_top.u_cache_top.u_cache_ctrl : Number of Cache Read misses              =   82 
COVER_INFO_RTL : u_top.u_cache_top.u_cache_ctrl.u_fifo_0 : FIFO full event occurred            =    1 

                        
 

 
Figure 6. stats.log output in the test results directory 

 



C. LWC Post-Regression Parser 

The “lwc_post_regression_parser” script is activated once the regression process is complete and the individual 
“stats.log” files, which contain coverage values for each test, are available. The parser reads these log files, calculates 
the average coverage achieved, and compares it to the threshold values specified in “stats_list.csv”. Based on this 
comparison, it generates a PASS or FAIL report (Figure 10). A FAIL status is given when actual coverage falls outside 
the expected range, indicating that the desired level of stimulus coverage has not been met. 

 
 

D. Testcase ranking 
Another feature of the LWC model is, that it computes specific metrics to assess and rank the efficacy of each test 

case, facilitating detailed coverage contribution analysis on a per-testcase basis. This is achieved by assigning metrics 
like ‘score’ and ‘rarity’ to each test. 

‘Score’, ‘rarity’, ‘volume’, ‘breadth’ are similar concepts as introduced in [1]. 
 
Metrics used by LWC – 
Score – how valuable a test is for bulk verification. 
             Score = (Volume2 + Rarity_Factor * Breadth2 – Time Factor – Time2)Power_Factor 
Rarity – how crucial a test is for rare scenario verification. Measured as 30% rarest buckets based on [1] 
SPF (score per farm cycle) – how efficient a test is for bulk verification (for a given farm time).  
             SPF=(Score∗TimeFactor)/cpuTime     
RPF (rare score per farm cycle) – how efficient a test is for rare scenario verification (for a given farm time). 
             RPF=(RareScore∗TimeFactor)/cpuTime 
 

 
 
 
 
The “lwc_post_regression_parser” script does test ranking. While parsing, the script keeps track of unique and bulk 

‘stats’ and CPU-time in-order to calculated metrics like Volume, Breadth, rarity, SPF, RPF and the total score. These 
metrics are then used to create graphs for studies, statistics, and comparisons. 

Figure 11 shows an example graph of 
test ranking. 
Tests in green scored the most and tests 
in red scored the least. 
 
Breadth (X-axis) – tests hitting variety 
of coverage i.e unique stat hits 
Volume (Y-axis) – test hitting bulk of 
your coverage i.e number of all stat 
hits. 
 
 

    Stat_item                                                                                 Actual_average   Expected_average   Expected_max_average     Status 
axi_env_0.axi_monitor : Number of AXI write requests     2500                 5000                                20000                                       FAIL 
axi_env_1.axi_monitor : Number of AXI write requests     8000                 5000                                20000                                     PASS 
Number of requests that saw a decerr                                      3000                   500                                   1000                                       FAIL 
Number of Cache Read hits                                                         16000               15000                               25000                                     PASS 
Number of Cache Read misses                                                  20000               15000                               25000                                     PASS 
u_fifo_0 : FIFO full event occurred                                                     60                      50                                     100                                     PASS 
u_fifo_1 : FIFO full event occurred                                                     80                    100                                     200                                      FAIL 

 
 

Figure 10. Sample ‘lwc_regression_cov_report.log’ output of post-regression parser script 
 

Figure 11. Test ranking – Breadth vs Volume 
 



III.   IMPACT OF LWC MODEL ON THE VERIFICATION PROCESS 
 
A. Bugs caught by LWC 
The primary motivation behind the LWC approach was a bug discovered at our cluster testbench where all the 

requests issued to the cluster were getting dropped due to ‘decerrs’ (decode errors). The bug wasn’t caught by the 
individual IP scoreboards, or the ‘basic’ self-checking directed tests and randoms used for the initial bring-up. 

 
The LWC approach was proposed to identify such stimulus issues much earlier in the project timeline. 
Since its deployment, LWC has caught many RTL, testbench, stimulus, and even architecture bugs. 
 
Examples of bugs caught by LWC 
a) An RTL issue was found during the bring-up of the set associative cache where only 32 of the total 64 sets 

were being accessed. Rest of the sets were unreachable. DV scoreboard doesn’t model set ID calculations as 
they only affect performance and not the functionality. This bug would typically be found either during 
performance verification or coverage reviews. Both happen later in the project timeline.  LWC was able to 
catch this issue immediately as stats were added to report the number of accesses to each set in the cache. 

b) A bug in the ECC ‘algorithm’ was discovered when too many ‘correctable’ errors were detected as 
‘uncorrectable’ errors. RTL and Scoreboard model the same ‘algorithm’; hence, verification couldn’t catch the 
bug. The ‘algorithm bug’ was discovered when LWC’s “max_threshold” check failed. 

c) Bug found in the RTL cache read hit logic while investigating low stat hit counts once the stat was implemented. 
d) RTL bugs caught after LWC post-regression checks complained of missing cross-feature interaction. In this 

case initial feature bring-up with the regressions passed. But once stat counters were added for cross-feature-
interaction, the post-regression parser identified corner case scenarios, missing stimulus, and hence bugs hiding 
due to them. 

e) A bad test-plan change resulted in silent disablement of a feature. This was caught during regressions 
immediately. 

f) A new opcode that was added to CHI protocol BFM (which is shared across many IPs). But a BFM bug resulted 
in the opcode being not sent in certain cases. This was caught after adding a stat counter in the BFM’s ‘consumer 
testbench’. The stat counter was later moved to the BFM to make it available to all consumer teams. 

g) A bad testcase change resulted in a high amount of illegal traffic. This caused a subtle drop in coverage which 
was not enough to push it beyond the threshold range as only a single test was affected. The issue was eventually 
caught by our anomaly detection code which investigates any drops in coverage during week-to-week coverage 
score comparisons. Anomaly detection is explained further in a later section. 

 
C. In-Simulation and Post-Simulation Checks 
LWC has been instrumental in making sure directed tests are meeting their intent. Often we develop directed tests 

to achieve specific scenarios for coverage purposes that may not necessarily occur in random tests. They may be 
targeting a corner case that is hard to hit or attempting to hit the depths of storage structures. We have used these stats 
counters to perform self-checks to ensure the scenarios are hit. This is done either by accessing the testbench stat 
counter in-simulation or performing a post-simulation check using our stats log parser. 

For example, if a directed test is written to target u_fifo_1, the log parser will ensure  “u_fifo_1 : FIFO full event occurred 
= 1” is seen in the stats log for this test. With this self-check, the testcase doesn’t get outdated as the project progresses, 
and RTL changes. 

 
D. Reuse at Higher Level Testbenches 
Most cluster and SOCV testcases are written as directed tests with the intention to hit specific use cases. 
However, these testbenches may not necessarily have the modelling or visibility into the individual IP designs or 

testbenches. The simple nature of counters implemented within a testbench, or RTL make it an easy candidate for re-
use. Our LWC counters are frequently used by higher level testbenches to make sure the intended features are being 
tested. This has saved a lot of debugging and bringing up time for cluster/SOCV testbenches. 

 
E. Self-Correcting Stimulus 
The object-oriented nature of the stats counters make it easy for a testcase to get live in-simulation coverage 

feedback. This can used to cover the depths of complex memory structures which can be hard to achieve. Typically, 
these are done by adding complex constraints with partial modeling of memory structures in constraints. Risks include 
over-constraining or incorrect modelling in the testcase. Access to prior coverage information can be useful but SV 



cover-groups don’t provide coverage feed-back with the ease that LWC approach can. Future work focuses on 
leveraging LWC counters for the application of reactive stimulus. 

 
F. Testcase Tuning 
The test ranking feature of LWC is used to identify the test cases that are more valuable and efficient at hitting 

coverage than others. The graphs below show how testcase tuning was done for an IP throughout a project. 
Average “lwcBreadth” (Figure 12) has mainly remained the same whereas “lwcVolume” (Figure 13) has decreased. 
However, “lwcSpf” and “lwcRpf” (Figure 14) have increased. This indicates that tests have become shorter and more 
efficient at consuming farm resources. 
The drop in “lwcVolume” i.e bulk coverage is acceptable. “lwcBreadth” staying the same means the tests are still 
hitting the same diverse coverage. 

 

         

 
 

 
 
G. Impact to the verification teams 
LWC model provides an automated and near-instant coverage feedback which may not be possible with traditional 

functional coverage. This saves us any manual efforts involved in running a coverage enabled build and regression, 
generating a merged functional coverage report. This has increased the verification productivity by finding significant 
bugs early in the development cycle. 

What has the LWC methodology allowed us to do ? 
a) Enabled LWC methodology in all IP, sub-IP, cluster, and SOCV testbenches across our entire division. 
b) Used LWC results to qualify every change before submission. 
c) Implemented stat counters in re-usable design IPs and verification IPs. 
d) Used LWC as the go-to source of coverage closure for feature verification. 
e) Provided us a cheap and consistent way to measure how efficient regressions are. 
f) Used stat counters to report metrics, for example, evolution of static latencies per IP over the course of a project. 
g) Allowed project-to-project / milestone-to-milestone / IP-to-IP “score” comparisons. 
h) Use “anomaly detection” to keep track of any drops in week-to-week coverage scores and notify the user. 
 

Figure 14. LwcSpf (score per farm cycle) and LwcRpf (rare score per farm cycle) 
 

      Figure 12. LwcBreadth over project lifecyle                     Figure 13. LwcVolume over project lifecyle 
 



The graphs in Figure 15 show project-1 as being the mature project with a stable score (in terms of lwcBreadth). 
Towards the end of the project lwcVolume reduces as the tests become more efficient. 

Project-2 (Figure 16) is the newer project where, coverage score starts close to 0 and shows many fluctuations on the 
way up. lwcVolume increases as each test starts hitting more coverage as project progresses. 

The anomaly detector can catch huge drops (circled in project-1) and subtle drops (circled in project-2) in the scores 
without relying on user specified thresholds. 

 
 
 
 
 

IV.  LIMITATIONS OF LWC 
While the LWC model offers significant advantages, it is not a complete replacement for traditional functional 

coverage. LWC’s use of simple counters as coverage bins limits its ability to handle complex cross-coverage scenarios, 
which can involve numerous cross-coverage bins along with features like ignore and illegal bins. Therefore, LWC 
must be used in conjunction with traditional functional coverage mechanism. 

 
V.  PERFORMANCE METRICS 

We evaluated the impact of the LWC counter implementation by conducting comparative studies of regression runs 
with and without counters. The testing was performed using 10000 stat counters across various testbenches. Analysis 
was done using the VCS simulator. 
For small testbenches, the introduction of counters resulted in an average runtime increase of 10%. This mainly due 
to logging the counter information. For large testbenches, the impact on runtime was 4%. There were no noticeable 
build/compile time deltas. 
In Figure 17, the blue line being higher than the green line shows the runtime overhead of an LWC enabled run.  
Orange line and green being identical shows that LWC has no build/compile time impact. 
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Figure 17. Build and runtime comparison of an LWC enabled run to an LWC disabled run 

Figure 15. Project-1  
                 lwcBreadth (top)  
                 lwcVolume (bottom) 
 

Figure 16. Project-2 
                 lwcBreadth (top)  
                 lwcVolume (bottom) 
 



Figure 18 illustrates the comparison results of an LWC enabled build to a functional coverage enabled build. 
Comparison was done using 10000 cover-points in an LWC disabled build/run and 10000 stat counters in a Functional 
coverage disabled build. 
LWC provides a 40-50% reduction in build time compared to a coverage enabled build and an average 20% in runtime 
savings. 

 
 

 
 
Figure 19 shows the comparison results of low weight coverage “scores” for the same codebase between two 
simulators. They have identical scores across long time spans. This helps validate LWC as a reliable methodology. 

 
 
 

 
VI.  FUTURE WORK 

Future work focusses on integrating LWC with LLM. This will use testcase ranking metrics to auto-tune a regression 
by injecting or removing test-cases until a specific coverage goal (lwcBreadth and lwcVolume) and efficiency (lwcSPF 
and lwcRPF) is met (this is a manual process today). 

 
VII.  CONCLUSION 

The Low Weight Coverage (LWC) model presents a compelling approach to enhancing functional coverage closure 
in large unit and cluster testbenches. Its ability to provide near-instant coverage feedback, test ranking and 
prioritization, and enforce stimulus quality makes it a valuable tool for accelerating coverage closure. 
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Figure 18. Build and runtime comparison of an LWC enabled run to Functional coverage enabled run 
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