
Large Language Model for Verification: A Review and
Its Application in Data Augmentation

Dan Yu, Eman El Mandouh, Waseem Raslan, Harry Foster,
Tom Fitzpatrick - Siemens Industry Software Inc.

Motivation

Newest development of ML in the last 2 years
Small application area w/ scarcity of research results
Transfer pretrained knowledge to EDA verification
Augment data for EDA ML works
Paradigms to apply LLM to improve quality for production

LLM Applications in Verification

• Assertion generation

• Coverage closure

• Formal verification

• Debugging

• Test stimulus generation

• Functional safety and security

• Code generation & completion

Review: Assertion Generation

Sun, Chuyue, et al.. "Towards Improving Verification Productivity with Circuit-Aware

Translation of Natural Language to SystemVerilog Assertions." First International

Workshop on Deep Learning-aided Verification. 2023.

Kande, Rahul, et al. "LLM-assisted Generation of Hardware

Assertions." arXiv preprint arXiv:2306.14027 (2023).

only 9.29% of the generated assertions are correct

Review: Coverage Closure

Tufano, Michele, et al. "Predicting Code Coverage without Execution." arXiv preprint

arXiv:2307.13383 (2023).

Not EDA, but applicable

Review: Formal Verification

First, Emily, et al. "Baldur: whole-proof generation and repair

with large language models." arXiv preprint arXiv:2303.04910

(2023).

LLM w/ 700m parameters fine tuned on proofs
Combine with classic automatic proving tools 67.5%

Review: Debugging

Kang, Sungmin, et al. "Large language models are few-shot testers: Exploring llm-based general

bug reproduction." 2023 IEEE/ACM 45th International Conference on Software Engineering

(ICSE). IEEE, 2023.

Kang, Sungmin, et al. "A Preliminary Evaluation of LLM-Based Fault

Localization." arXiv preprint arXiv:2308.05487 (2023).

40% more new bugs compared to the best classic
approaches at acc@1 on Defects4J

successfully reproduce 33.5% of all bugs in the benchmark
dataset

Review: Test Stimulus Generation

Zhang, Zixi, et al. "LLM4DV: Using Large Language Models for Hardware Test

Stimuli Generation." arXiv preprint arXiv:2310.04535 (2023).

Primitive Data Prefetcher Core
Code coverage: 98.94%

Ibex CPU Instruction Decoder
Increased Complexity, Decreased Results
Code coverage: 86.19%

Ibex CPU Design
Code coverage only 5.61%

Review: Functional Safety and Security

Paria, Sudipta, et al. "DIVAS: An LLM-based End-to-End Framework for SoC Security Analysis

and Policy-based Protection." arXiv preprint arXiv:2308.06932 (2023).

40%-55% in generating relevant CWEs

Review: Code Generation and Completion

Roziere, Baptiste, et al. "Code llama: Open foundation models for code." arXiv preprint

arXiv:2308.12950 (2023).

For general code generation
Not specifically tailored for RTL code

LLM Mutation-Based Testing Framework

• Mutation Testing: identifies weakness/holes that may be unnoticed in
Design TB.

• LLM injects “Mutation”: an artificial modification in the tested design
that changes its behavior.

• Design Test set should be mutation-adequate: detect as many as
induced mutations to prove robustness.

• The proposed LLM-based mutation testing framework starts by
extracting design signals and design scope as fault injection candidates.

• The LLM is directed by a set of prompts to generate a set of faulty
versions of the original DUT.

• A compilation step is followed to assure that the injected changes are
syntactically correct.

• The “Mutation Killing Ratio” is used as a criteria to measure how many
of the injected faults have been detected by the design test set.

LLM Mutation-Based Testing Framework
Experimental Results

✓ Our Experiment is based on 3 In-House Designs.

✓ 12 variations have been created for every design.

✓ No of Mutations Injected (Design_1 : 63, Design_2 : 69,
Design_3: 105)

✓ Among all LLM-generated changes, although 75% compile
without errors, 25% still requires manual fixes.

✓ Design TB’s can detect an average of 50.59% of injected changes
only.

✓ 49.41% were undetected by the current testbench highlights
coverage gaps in TB’s

✓ These results prove the power of LLM in a mutation-injection
methodology to automate testbench hole identification.

Bottom-up Design Creation

• “Chain of thought”, divide
into smaller tasks

• Keep enhancing results

• Ask to refactor

• Make incremental changes

• Instruct to follow a coding
style

Create a multadd Verilog module that is a two-stage pipeline. It accepts four 8-bit
numbers (a, b, c, d) multiplies "a" and "b" and multiplies "c" and "d" in the first
cycle. It returns the sum of the two multiplications in one 17-bit on output
"prodsum" port on the second clock cycle.
Good start, add a new input signal, pipeline_ready, that indicates when the data is
ready on the input ports (a-d)
OK, good. Add another output port that indicates when the summation data on
prodsum is ready.
Great, now I need to create a simple ALU that utilizes this multadd_pipeline
module you have created.
Add a new operation to this ALU to give the summation of the four input data
ports [a-d].
Not there yet, we need to add a new port, operation, to the ALU that identifies
when the ALU should do the multadd operation and when it should do the
summation operation.
OK, refactor the summation operation in a new Verilog module and use that
module in the ALU with the multadd_pipeline.

Instructions to LLM

LLM Generated Code

Top-down Design Creation

What is the word size of this CPU (e.g., 8-bit, 16-bit, 32-bit)?
What are the main components of the CPU (e.g., ALU, register file, control
unit, etc.)?
Are there any specific instructions that this CPU will support?
Do you have any specific clock frequency or timing requirements in mind?
Are there any specific addressing modes that you would like to support in
this CPU?

• Use of “Flipped Interaction
Pattern”

• Instruct LLM to ask you
questions to narrow down
requirements

• Refine smaller
components by providing
more details

LLM Generated Questions

LLM Generated Code

Design Understanding

Describe control_operation Module Write state-transition Table of control_operation

Design Understanding

LLM-generated GraphViz DOT Notation of a Given
Verilog Module

GraphViz Visualization of Recognized FSM

LLM Application Paradigms

Quality Gate/Guardrail

LLM
Quality

Gate Results

External
Knowledge

LLM
Quality

Gate Results

Error
messages

Self-check Feedback Loop

LLM Application Paradigms

External Agent Chain-of-Thought

LLM
Quality

Gate Results

Agent

Delegate

LLM
Quality

Gate Results

Chain of
Thought

Next
Step

Thanks

Q&A

	Slide 1: Large Language Model for Verification: A Review and Its Application in Data Augmentation
	Slide 2: Motivation
	Slide 3: LLM Applications in Verification
	Slide 4: Review: Assertion Generation
	Slide 5: Review: Coverage Closure
	Slide 6: Review: Formal Verification
	Slide 7: Review: Debugging
	Slide 8: Review: Test Stimulus Generation
	Slide 9: Review: Functional Safety and Security
	Slide 10: Review: Code Generation and Completion
	Slide 11: LLM Mutation-Based Testing Framework
	Slide 12: LLM Mutation-Based Testing Framework Experimental Results
	Slide 13: Bottom-up Design Creation
	Slide 14: LLM Generated Code
	Slide 15: Top-down Design Creation
	Slide 16: LLM Generated Code
	Slide 17: Design Understanding
	Slide 18: Design Understanding
	Slide 19: LLM Application Paradigms
	Slide 20: LLM Application Paradigms
	Slide 21: Thanks

