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Motivation

Newest development of ML in the last 2 years
Small application area w/ scarcity of research results
Transfer pretrained knowledge to EDA verification
Augment data for EDA ML works
Paradigms to apply LLM to improve quality for production



LLM Applications in Verification

• Assertion generation

• Coverage closure

• Formal verification

• Debugging

• Test stimulus generation

• Functional safety and security

• Code generation & completion



Review: Assertion Generation

Sun, Chuyue, et al.. "Towards Improving Verification Productivity with Circuit-Aware 

Translation of Natural Language to SystemVerilog Assertions." First International 

Workshop on Deep Learning-aided Verification. 2023.

Kande, Rahul, et al. "LLM-assisted Generation of Hardware 

Assertions." arXiv preprint arXiv:2306.14027 (2023).

only 9.29% of the generated assertions are correct



Review: Coverage Closure

Tufano, Michele, et al. "Predicting Code Coverage without Execution." arXiv preprint 

arXiv:2307.13383 (2023).

Not EDA, but applicable



Review: Formal Verification

First, Emily, et al. "Baldur: whole-proof generation and repair 

with large language models." arXiv preprint arXiv:2303.04910 

(2023).

LLM w/ 700m parameters fine tuned on proofs
Combine with classic automatic proving tools 67.5%



Review: Debugging

Kang, Sungmin, et al. "Large language models are few-shot testers: Exploring llm-based general 

bug reproduction." 2023 IEEE/ACM 45th International Conference on Software Engineering 

(ICSE). IEEE, 2023.

Kang, Sungmin, et al. "A Preliminary Evaluation of LLM-Based Fault 

Localization." arXiv preprint arXiv:2308.05487 (2023).

40% more new bugs compared to the best classic 
approaches at acc@1 on Defects4J

successfully reproduce 33.5% of all bugs in the benchmark 
dataset



Review: Test Stimulus Generation

Zhang, Zixi, et al. "LLM4DV: Using Large Language Models for Hardware Test 

Stimuli Generation." arXiv preprint arXiv:2310.04535 (2023).

Primitive Data Prefetcher Core
Code coverage: 98.94%

Ibex CPU Instruction Decoder
Increased Complexity, Decreased Results
Code coverage: 86.19%

Ibex CPU Design
Code coverage only 5.61%



Review: Functional Safety and Security

Paria, Sudipta, et al. "DIVAS: An LLM-based End-to-End Framework for SoC Security Analysis 

and Policy-based Protection." arXiv preprint arXiv:2308.06932 (2023).

40%-55% in generating relevant CWEs 



Review: Code Generation and Completion

Roziere, Baptiste, et al. "Code llama: Open foundation models for code." arXiv preprint 

arXiv:2308.12950 (2023).

For general code generation
Not specifically tailored for RTL code



LLM Mutation-Based Testing Framework

• Mutation Testing: identifies weakness/holes that may be unnoticed in 
Design TB.

• LLM injects “Mutation”: an artificial modification in the tested design 
that changes its behavior.

• Design Test set should be mutation-adequate: detect as many as 
induced mutations to prove robustness.

• The proposed LLM-based mutation testing framework starts by 
extracting design signals and design scope as fault injection candidates.

• The LLM is directed by a set of prompts to generate a set of faulty 
versions of the original DUT.

• A compilation step is followed to assure that the injected changes are 
syntactically correct.

• The “Mutation Killing Ratio” is used as a criteria to measure how many 
of the injected faults have been detected by the design test set.



LLM Mutation-Based Testing Framework
Experimental Results

✓ Our Experiment is based on 3 In-House Designs.

✓ 12 variations have been created for every design.

✓ No of Mutations Injected ( Design_1 : 63, Design_2 : 69,
Design_3: 105)

✓ Among all LLM-generated changes, although 75% compile
without errors, 25% still requires manual fixes.

✓ Design TB’s can detect an average of 50.59% of injected changes
only.

✓ 49.41% were undetected by the current testbench highlights
coverage gaps in TB’s

✓ These results prove the power of LLM in a mutation-injection
methodology to automate testbench hole identification.



Bottom-up Design Creation

• “Chain of thought”, divide 
into smaller tasks

• Keep enhancing results

• Ask to refactor

• Make incremental changes

• Instruct to follow a coding 
style 

Create a multadd Verilog module that is a two-stage pipeline. It accepts four 8-bit 
numbers (a, b, c, d) multiplies "a" and "b" and multiplies "c" and "d" in the first 
cycle. It returns the sum of the two multiplications in one 17-bit on output 
"prodsum" port on the second clock cycle. 
Good start, add a new input signal, pipeline_ready, that indicates when the data is 
ready on the input ports (a-d)
OK, good. Add another output port that indicates when the summation data on 
prodsum is ready.
Great, now I need to create a simple ALU that utilizes this multadd_pipeline 
module you have created.
Add a new operation to this ALU to give the summation of the four input data 
ports [a-d].
Not there yet, we need to add a new port, operation, to the ALU that identifies 
when the ALU should do the multadd operation and when it should do the 
summation operation.
OK, refactor the summation operation in a new Verilog module and use that 
module in the ALU with the multadd_pipeline.

Instructions to LLM



LLM Generated Code



Top-down Design Creation

What is the word size of this CPU (e.g., 8-bit, 16-bit, 32-bit)?
What are the main components of the CPU (e.g., ALU, register file, control 
unit, etc.)?
Are there any specific instructions that this CPU will support?
Do you have any specific clock frequency or timing requirements in mind?
Are there any specific addressing modes that you would like to support in 
this CPU?

• Use of “Flipped Interaction 
Pattern”

• Instruct LLM to ask you 
questions to narrow down 
requirements

• Refine smaller 
components by providing 
more details

LLM Generated Questions



LLM Generated Code



Design Understanding

Describe control_operation Module Write state-transition Table of control_operation



Design Understanding

LLM-generated GraphViz DOT Notation of a Given 
Verilog Module 

GraphViz Visualization of Recognized FSM



LLM Application Paradigms

Quality Gate/Guardrail

LLM
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Gate Results
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LLM
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LLM Application Paradigms

External Agent Chain-of-Thought

LLM
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Gate Results
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Thanks
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