Four Problems with Policy-Based Constraints and
How to Fix Them

Dillan Mills Chip Haldane
Synopsys, Inc. The Chip Abides, LLC
Maricopa, AZ Gilbert, AZ
dillan@synopsys.com chip@thechipabides.com
Abstract

This paper presents solutions to problems encountered in the implementation of policy classes for System Verilog
constraint layering. Policy classes provide portable and reusable constraints that can be mixed and matched into the
object being randomized. There have been many papers and presentations on policy classes since the original presentation
by John Dickol at DVCon 2015. The paper addresses three problems shared by all public policy class implementations
and presents a solution to a fourth problem. The proposed solutions introduce policy class inheritance, tightly pair policy
definitions with the class they constrain, reduce the expense of defining common policies using macros, and demonstrate
how to treat policies as disposable and lightweight objects. The paper concludes that the proposed solution improves the
usability and efficiency of policy classes for SystemVerilog constraint layering.

I. CONSTRAINTS AND PoLICY CLASS REVIEW

Random objects and constraints are the foundational building blocks of constrained random verification in SystemVerilog.
The simplest implementations embed fixed constraints within a class definition. Embedded constraints lack flexibility; all
randomized object instances must meet these requirements exactly as they are written.

In-line constraints using the with construct offer marginally better flexibility. Although these external constraints allow
greater variability of random objects, their definitions are still fixed within the calling context. Furthermore, all in-line constraints
must be specified within a single call to randomize() .

Policy classes are a technique for applying SystemVerilog constraints in a portable, reusable, and incremental manner, origi-
nally described by John Dickol [1] [2]. The operating mechanism leverages an aspect of "global constraints," the simultaneous
solving of constraints across a set of random objects. Randomizing an object that contains policies also randomizes the policies.
Meanwhile, the policies contain a reference back to the container. Consequently, the policy container is constrained by the
policies it contains. Dickol’s approach is illustrated by the following code.

I class policy_base#(type ITEM=uvm_object);

2 ITEM item;

3

4 virtual function void set_item(ITEM item);
5 this.item = item;

6 endfunction

7 endclass

9 class policy_list#(type ITEM=uvm_object) extends policy_base#(ITEM);

10 rand policy_base#(ITEM) policy[$1;

11

12 function void add(policy_base#(ITEM) pcy);

13 policy.push_back(pcy);

14 endfunction

15

16 function void set_item(ITEM item);

17 foreach(policy[i]) policy[i].set_item(item);
18 endfunction

19 endclass

Fig. 1: The policy_base and policy_list classes

These two base classes provide the core definitions for policies: policy_base implements the hook back to the policy
container, and policy_list enables related policies to be organized into groups. Both classes are parameterized by a container
object type, so a unique specialization will be required for each policy-enabled container. Policy containers like transactions,
sequences, and configuration objects implement these classes to support flexible random steering. Below are examples of a
generic transaction, addr_txn , with a random address and size and some policy classes to constrain those attributes.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

class addr_txn;
rand addr_t addr;
rand int size;
rand policy_base#(addr_txn) policy[$1;

constraint c_size {size inside {1, 2, 43};}

function void pre_randomize;
foreach(policy[i]) policy[i].set_item(this);
endfunction
endclass

class addr_policy_base extends policy_base#(addr_txn);
addr_range ranges[$];

function void add(addr_t min, addr_t max);
addr_range rng = new(min, max);
ranges.push_back(rng);
endfunction
endclass

class addr_permit_policy extends addr_policy_base;
rand int selection;

constraint c_addr_permit {
selection inside {[0:ranges.size()-11};

foreach(ranges[i]) {
if(selection == i) {
item.addr inside {[ranges[i].min:ranges[i].max - item.sizel};

b
b

endclass

class addr_prohibit_policy extends addr_policy_base;
constraint c_addr_prohibit {
foreach(ranges[i]) {
I'(item.addr inside {[ranges[i].min:ranges[i].max - item.size + 1]});
3
3

endclass

Fig. 2: The addr_txn class and policies for constraining it

The addr_permit_policy and addr_prohibit_policy classes implement some policies for constraining addr_txn
addresses. Address ranges can be stored in the ranges array. The addr_permit_policy will choose one of the ranges at
random and constrain the address to be within the range, while the addr_prohibit_policy will exclude addresses that fall

within any of the ranges in its list.

The final class shows how policies might be used. The addr_constrained_txn class extends addr_txn and defines two
policies, one that permits the address to be within one of two ranges, and one that prohibits the address from being within a
third range. The addr_constrained_txn class then passes the local pcy list to the parent policy queue.

! class addr_constrained_txn extends addr_txn;

2 function new;

3 addr_permit_policy permit = new;

4 addr_prohibit_policy prohibit = new;
5 policy_list#(addr_txn) pcy = new;

6

7 permit.add('h00000000, 'hQQQOFFFF);

8 permit.add('h10000000, 'h1FFFFFFF);

9 pcy.add(permit);

" prohibit.add('h13000000, 'h13QFFFFF);

12 pcy.add(prohibit);

13

14 this.policy = {pcy};
15 endfunction

16 endclass

Fig. 3: The addr_constrained_txn subclass

At this point, an instance of addr_constrained_txn can be created and randomized like normal, and the address will be
constrained based on the embedded policies.

i addr_constrained_txn txn = new();
2 txn.randomize();

Fig. 4: Randomizing an instance of addr_constrained_txn

Further work on policy-based constraints has been presented since the original DVCon presentation in 2015. Kevin Vascon-
cellos and Jeff McNeal applied the concept to test configuration and added many nice utilities to the base policy class [3].
Chuck McClish extended the concept to manage real number values for User Defined Nettypes (UDN) and Unified Power
Format (UPF) pins in an analog model [4]. Additionally, McClish defined a policy builder class that was used to generically
build multiple types of policies while reducing repeated code that was shared between each policy class in the original
implementation.

Although there has been extensive research on policies, this paper aims to address and provide solutions for three issues
that have not been adequately resolved in previous implementations. Furthermore, a fourth problem that arose during testing
of the upgraded policy package implementation will also be discussed and resolved.

II. PROBLEM #1: PARAMETERIZED POLICIES

The first problem with the above policy implementation is that because policy_base is parameterized to the class it
constrains, different specializations cannot be grouped and indexed. The awkward consequences of this limitation become
apparent when using policies with a class hierarchy. If you extend a class and add a new random field then you need a new
policy type to constrain that field. The new policy type requires its own policy list, and the new list must be traversed and
mapped back to the container during pre_randomize() .

Imagine a complex class hierarchy with several layers of inheritance and extension, and constrainable attributes on each
layer (one common example is a multi-layered sequence API library, such as the example presented by Jeff Vance [5]). Using
policies becomes cumbersome in this case because each class layer requires a unique family of constraints organized into a
distinct list. This stratification of polices places a burden on users to know which layer of the class hierarchy defines each
attribute they want to constrain, and the name of the associated policy list for the matching policy type. For example, extending
the addr_txn class to create a version with parity checking results in a class hierarchy that looks like this:

| class addr_txn;
2 // ... unchanged from previous example
3 endclass

s class addr_p_txn extends addr_txn;

6 rand bit parity;

7 rand bit parity_err;

8 rand policy_base#(addr_p_txn) addr_p_policy[$];

9

10 constraint c_parity_err {

1 soft (parity_err == 0);

12 (parity_err) * ($countones({addr, parity}) == 1);
13 3

14

15 function void pre_randomize;

16 super.pre_randomize();

17 foreach(addr_p_policy[i]) addr_p_policy[i].set_item(this);
18 endfunction

19 endclass
20
21 class addr_constrained_txn extends addr_p_txn;

P} function new;

2 addr_permit_policy permit_p = new;

2 addr_prohibit_policy prohibit_p = new;

25

2 // definition to follow in a later example - constrains parity_err bit
27 addr_parity_err_policy parity_err_p = new;
28

2 policy_list#(addr_txn) addr_pcy_1st = new;
30 policy_list#(addr_p_txn) addr_p_pcy_lst = new;
31

» permit_p.add('h00000000, 'hOOOOFFFF);

3 permit_p.add('h10000000, 'h1FFFFFFF);

34 addr_pcy_lst.add(permit_p);

35

3 prohibit_p.add('h13000000, 'h130FFFFF);

37 addr_pcy_1lst.add(prohibit_p);

38

3 parity_err_p.set(1'b1);

40 addr_p_pcy_lst.add(parity_err_p);

41

o) this.addr_policy = {addr_pcy_lst};

43 this.addr_p_policy = {addr_p_pcy_lst};

“ endfunction

45 endclass

Fig. 5: Modified address transaction classes with a parity checking subclass and policies included

Scaling this implementation results in a lot of repeated boilerplate code and is not very intuitive to use. Each additional
subclass in a hierarchy only increases the chaos and complexity of implementing and using policies effectively.

The solution to this problem is to replace the parameterized policy base with a non-parameterized base and a parameterized
extension. We chose an interface class as our non-parameterized base for the flexibility it offers over a virtual base class—
specifically, our policies are bound only to implement the interface functions and not to extend a specific class implementation.

1 interface class policy;
2 pure virtual function void set_item(uvm_object item);
3 endclass

s virtual class policy_imp#(type ITEM=uvm_object) implements policy;

6 protected rand ITEM m_item;

s

8 virtual function void set_item(uvm_object item);

9 if (!$cast(m_item, item)) begin

10 “uvm_warning("policy::set_item()"”, "Item/policy type mismatch”)
1 this.m_item = null;

12 this.m_item.rand_mode(0);

13 end

14 endfunction: set_item

15 endclass: policy_imp

7 typedef policy policy_queue[$];

Fig. 6: The policy interface class and policy_imp class

A non-parameterized base enables all policies targeting a particular class hierarchy to be stored within a single common
policy_queue . A parameterized template, policy_imp , implements the base interface and core functionality required by
all policies.

One consequence of eliminating the parameter from our base type is that the policy-enabled container object, item, and its
assignment function, set_item() , are no longer strongly typed. Here we make a small concession, using uvm_object as
our default policy-enabled type. This means that all classes that implement our policies must derive from uvm_object , and
we need to use dynamic casting to ensure that policies and their containers are type-compatible. In the example above, item
is set to null and randomization is disabled when the cast fails, preventing runtime problems in the event that incompatible
policies are applied.

Not much changes when it comes to defining policies; the address policies now extend policy_imp instead of
policy_base , and the underlying constraints are written as implications so that they will not apply when item is missing.

i class addr_policy extends policy_imp#(addr_txn);
2 // ... unchanged from previous example, with updated class extension
3 endclass

s class addr_parity_err_policy extends policy_imp#(addr_p_txn);

6 protected bit parity_err;

.

8 constraint c_fixed_value {m_item != null -> m_item.parity_err == parity_err;}
9

10 function new(bit parity_err);

1 this.parity_err = parity_err;

12 endfunction

13 endclass
15 class addr_permit_policy extends addr_policy;
16 // same as before

17 endclass

19 class addr_prohibit_policy extends addr_policy;

20 // same as before
21 endclass

Fig. 7: Address policies updated to use the new policy implementation

However, the address transaction classes are simplified considerably. Only a single policy queue is required in the class
hierarchy, and the vast majority of the boilerplate code has been eliminated, including all of the specialized lists. The addr_txn
class now extends uvm_object to provide compatibility with the policy interface.

1 class addr_txn extends uvm_object;

2 rand policy_queue policies;
3 // policy is replaced with the above. All other members, constraints,
4 // and pre_randomize are unchanged from the previous example

5 endclass

7 class addr_p_txn extends addr_txn;

8 rand bit parity;

9 rand bit parity_err;

10 constraint c_parity_err {/*...*/}

1 // The local addr_p_policy and pre_randomize are removed. Everything
12 // else is unchanged from the previous example

13 endclass

15 class addr_constrained_txn extends addr_p_txn;

16 function new;

17 addr_permit_policy permit_p = new();
I8 addr_prohibit_policy prohibit_p = new();
19 addr_parity_err_policy parity_err_p;

20

21 // only a single policy queue is necessary now
2 permit_p.add('h00000000, 'hQQOQFFFF);

3 permit_p.add('h10000000, 'h1FFFFFFF);

2% this.policies.push_back(permit_p);

25

26 prohibit_p.add('h13000000, 'h13QFFFFF);

27 this.policies.push_back(prohibit_p);

28

2 parity_err_p = new(1'b1);

30 this.policies.push_back(parity_err_p);

3l endfunction

n endclass

Fig. 8: Address transaction classes updated to use the new policy implementation

III. PROBLEM #2: DEFINITION LOCATION

The second problem with policies is “where do I define my policy classes?” This is not a complicated problem to solve;
most users will likely wish to place their policy classes in a file or files close to the class they are constraining. However,
directly embedding policy definitions within the class they constrain offers a myriad of benefits. Not only does this convention
eliminate all guesswork about where to define and discover policies, but embedded policies also gain access to all members of
their container class, including protected properties and methods! This privileged access enables policies to constrain attributes
of a class that are not otherwise exposed, improving encapsulation.

To further optimize the organization of potentially large families of policies, we establish a convention of defining all
policy classes within an embedded wrapper class called POLICIES . Each layer of a class hierarchy that implements policies
will have its own embedded POLICIES wrapper, and individual POLICIES wrappers extend other wrappers in a manner

parallel to their container classes. This parallel inheritance pattern is shown below, with addr_p_txn: :POLICIES extending
addr_txn: : POLICIES .

1 class addr_txn extends uvm_object;

2 // class members, constraints, and pre_randomize unchanged from previous
3

4 class POLICIES;

5 class addr_policy extends policy_imp#(addr_txn);

6 // ... unchanged from previous standalone class example
7 endclass

8

9 class addr_permit_policy extends addr_policy;

10 // ... unchanged from previous standalone class example
1" endclass

12

13 class addr_prohibit_p_policy extends addr_policy;

14 // ... unchanged from previous standalone class example
i5 endclass

16 endclass: POLICIES

17 endclass

v class addr_p_txn extends addr_txn;

2 protected rand bit parity_err;

21 // other class members and constraints unchanged from previous example
22

2 class POLICIES extends addr_txn::POLICIES;

u class addr_parity_err_policy extends policy_imp#(addr_p_txn);
25 // ... unchanged from previous example

2 endclass

27

28 static function addr_parity_err_policy PARITY_ERR(bit value);
2 PARITY_ERR = new(value);

30 endfunction

31 endclass: POLICIES

» endclass
33
s class addr_constrained_txn extends addr_p_txn;

3 function new;

36 addr_constrained_txn: :POLICIES: :addr_permit_policy permit_p = new();
37 addr_constrained_txn: :POLICIES: :addr_prohibit_policy prohibit_p = new();
38

39 // policy constraint value setup unchanged from previous example

40

a1 this.policies.push_back(

@ addr_constrained_txn: :POLICIES: :PARITY_ERR(1'b1)

43) 5

“ endfunction

45 endclass

Fig. 9: Address transaction classes with embedded policies

This example also shows how we can define static constructor functions within POLICIES wrappers. This practice further
reduces the cost of using policies since we can instantiate and initialize them with a single call, as demonstrated with the call to
addr_constrained_txn: :POLICIES: :PARITY_ERR() . Note that although the PARITY_ERR constructor is defined in
addr_p_txn: :POLICIES , it is accessible through addr_constrained_txn::POLICIES because of the wrapper class in-

heritance. The POLICIES:: scoping layer even helps to make code more readable and easy to understand.

What’s more, the parity_err property has now been defined as protected , preventing anything but our PARITY_ERR
policy from manipulating that "knob." In fact, a more advanced use of policies might define all members of a target class as
protected, restricting the setting of fields exclusively through policies and reading through accessor functions, thus encouraging
maximum encapsulation/loose coupling, which reduces the cost of maintaining and enhancing code and prevents bugs from
cascading into classes that use policy-enabled classes.

IV. PROBLEM #3: BOILERPLATE OVERLOAD

The third problem with using policies is that policies are relatively expensive to define since you need at a minimum: a class
definition, a constructor, and a constraint. This will be relatively unavoidable for complex policies, such as those defining a
relationship between multiple specific class attributes. For generic policies, such as equality constraints (property equals X),
range constraints (property between Y and Z), or set membership (keyword inside) constraints, macros can be used to
drastically reduces the expense and risk of defining common policies. The macros are responsible for creating the specialized
policy class for the required constraint within the target class, as well as a static constructor function that is used to create new
policy instances of the class. Additional macros are utilized for setting up the embedded POLICIES class within the target
class. These macros can be used hand in hand with the non-macro policy classes needed for complex constraints, if necessary.

1 // Fixed-value policy class and constructor macro

2 “define fixed_policy(POLICY, FIELD, TYPE) \
3 “m_fixed_policy_class(POLICY, FIELD, TYPE)

4 “m_fixed_policy_constructor(POLICY, TYPE)

6 “define m_fixed_policy_class(POLICY, FIELD, TYPE) \
7 class POLICY" " _policy extends base_policy; \
8 constraint c_fixed_value { \
9 (m_item != null) -> (m_item.FIELD == 1_val); \
10 } \
11 \
12 function new(TYPE value); \
13 this.1l_val = value; \
14 endfunction \
It endclass: POLICY™ " _policy

16

17 “define m_fixed_policy_constructor(POLICY, TYPE) \
18 static function POLICY™ " _policy POLICY(TYPE value); \
19 POLICY = new(value); \
20 endfunction: POLICY

Fig. 10: Macros for setting up the embedded POLICIES class and a fixed value policy

This example includes a ~fixed_policy macro, which wraps two additional macros responsible for creating a policy
class and a static constructor for the class. This ~fixed_policy example policy class lets you constrain a property to a
fixed value. A more complete macro definition can be found in Appendix B. The appendix includes ~start_policies ,
“start_extended_policies , and “end_policies macros that are used to create the embedded POLICIES class within
the constrained class instead of using hard-coded class and endclass statements. They set up class inheritance as needed
and create a local typedef for the policy_imp parameterized type.

1 class addr_txn extends uvm_object;
// class members, constraints, and pre_randomize unchanged from previous
<« example

S

4 “start_policies(addr_txn)
5 “include "addr_policies.svh”

6 “end_policies
7 endclass

o class addr_p_txn extends addr_txn;

10 // class members and constraints unchanged from previous example
11

12 “start_extended_policies(addr_p_txn, addr_txn)

13 “fixed_policy(PARITY_ERR, parity_err, bit)

14 “end_policies

15 endclass

17 class addr_constrained_txn extends addr_p_txn;
18 // ... unchanged from previous example
19 endclass

Fig. 11: Simplified address transaction classes using the policy macros

The base addr_txn class has complex policies with a relationship between the addr and size fields, so rather than
creating a policy macro that will only be used once, they can either be left as-is within the embedded policies class, or moved to
a separate file and included with ~include as was done here to keep the transaction class simple. The child parity transaction
class is able to use the ~fixed_policy macro to constrain the parity_err field. The constraint block remains the same
as the previous example.

V. PROBLEM #4: UNEXPECTED POLICY REUSE BEHAVIOR AND OPTIMIZING FOR LIGHTWEIGHT POLICIES

A fourth problem occurred during our initial deployment of policies. We observed occasional unexpected behavior when
attempting to re-randomize objects with policies. We didn’t thoroughly characterize the behavior, but sometimes policies seemed
to “remember” previous randomizations and wouldn’t reapply their constraints during subsequent randomize calls. Results
would clearly violate even simple policies.

Our policy architecture prioritizes scalability; policy classes are lightweight with a minimal footprint. Rather than investing
effort to diagnose and work around the problem with reusing policies, we adopted a “use once and discard” approach, leaning
into their disposable nature. It costs little to apply fresh policy instances before re-randomizing a target object. Following this
strategy completely eliminated policy misbehavior.

To facilitate a safer form of policy reuse we introduced a copy method that returns a fresh policy instance initialized to
the same state as the policy that implements it. We also doubled down on our use of static constructors to generate initialized
policies.

1 static function addr_parity_err_policy PARITY_ERR(bit value);
2 PARITY_ERR = new(value);
3 endfunction

5 this.policies = '{addr_constrained_txn::POLICIES: :PARITY_ERR(1'b1)};

Fig. 12: Example static constructor function from the PARITY_ERR policy class
Passing array literals populated by policy instances from static constructors proved to be an excellent way to pack a lot of
intent into little code. It also neatly worked around the reliability issues of reused policies.
VI. MORE IMPROVEMENTS TO THE POLICY PACKAGE

The examples presented so far are functional, but are lacking many features that would be useful in a real-world implemen-
tation. The following examples will present additional improvements to the policy package that will make it more practical
and efficient to use.

A. Expanding the policy interface class

The following policy interface class adds additional methods for managing a policy.

interface class policy;

pure virtual function string name();

pure virtual function string type_name();

pure virtual function string description();

pure virtual function bit item_is_compatible(uvm_object item);
pure virtual function void set_item(uvm_object item);

pure virtual function policy copy();

endclass: policy

Fig. 13: Expanded policy interface class

The name , description , and copy methods are implemented by the policy (or policy macro) directly and provide
reporting information useful when printing messages about the policy to the log for the former two, or specific behavior for
making a copy for the latter. The remaining three methods are implemented by policy_imp and are shared by all policies.

B. Better type safety checking and reporting in policy_imp methods
Some of the benefits of above methods can be seen by examining the new set_item method used by policy_imp .

21

22

23

24

25

26

27

virtual function void set_item(uvm_object item);
if (item == null) begin
“uvm_error("policy::set_item()", "NULL item passed”)

end else if ((this.item_is_compatible(item)) && $cast(this.m_item, item)) begin

“uvm_info(
"policy::set_item()",
$sformatf(

n

"policy <%s> applied to item <¥%s>: %s”,
this.name(), item.get_name(), this.description()
D¢
UVM_FULL
)

this.m_item.rand_mode(1);

end else begin
“uvm_warning(
"policy::set_item()",
$sformatf(
"Cannot apply policy '%@s' of type '%0s' to target object '%@s' of
— 1incompatible type '%@0s'",
this.name(), ITEM::type_name(), item.get_name(),
< item.get_type_name()
)
)
this.m_item = null;
this.m_item.rand_mode(@);
end
endfunction: set_item

Fig. 14: set_item method from policy_imp

10

The set_item method makes use of all the reporting methods to provide detailed log messages when set_item succeeds
or fails. Additionally, the item_is_compatible is used before the \$cast method is called and the rand_mode state is
kept consistent with the result of the cast.

C. Replacing policy_list with policy_queue

Eagle-eyed readers might have noticed the lack of presence of a policy_list class in any of the examples above after
migrating to the improved policy interface. Rather, a single typedef is all that is necessary to manage policies in a class.

i typedef policy policy_queuel[$];

Fig. 15: The policy_queue typedef

The policy_queue type is capable of storing any policy that implements the policy interface. The default queue methods
are sufficient for aggregating policies, and in practice we found that using policy queues as containers was more efficient than
policy_list instances. For example, for functions expecting a policy_queue argument we can directly pass in array literals
populated by calls to static constructor functions, allowing us to define, initialize, aggregate, and pass policies all in a single
line of code!

D. Standardize policy implementations with the policy_container interface and policy_object mixin

The policy_container interface class defines a set of functions for managing policies using policy_queue arguments.
These functions provide a simple, standard way to implement policies across a verification environemnt.

1 interface class policy_container;

3 // Queries

4 pure virtual function bit has_policies();

5

6 // Assignments

7 pure virtual function void set_policies(policy_queue policies);
8 pure virtual function void add_policies(policy_queue policies);
9 pure virtual function void clear_policies();

10

1 // Access

pure virtual function policy_queue get_policies();

14 // Copy
15 pure virtual function policy_queue copy_policies();

7 endclass: policy_container

Fig. 16: The policy_container interface class

The policy_object mixin implements the policy_container interface and contains a protected policy_queue for
managing policies (a complete example is available in Appendix A).

1 class policy_object #(type BASE=uvm_object) extends BASE implements
<» policy_container;

3 protected policy_queue m_policies;

4

5 // Queries

6 virtual function bit has_policies();

7 // returns true/false based on size of m_policies

11

8 endfunction: has_policies

10 // Assignments

1 virtual function void set_policies(policy_queue policies);
12 // sets m_policies to a new queue of policies
13 endfunction: set_policies

14

15 virtual function void add_policies(policy_queue policies);
16 // adds new policies to m_policies

17 endfunction: add_policies

18

19 virtual function void clear_policies();

2 // clears m_policies

21 endfunction: clear_policies

22

2 // Access

2 virtual function policy_queue get_policies();

25 // return a handle to m_policies

2 endfunction: get_policies

27

28 // Copy

2 virtual function policy_queue copy_policies();

30 // a copy of m_policies

31 endfunction: copy_policies

2 endclass: policy_object

Fig. 17: A policy_object base class implementation

The policy_object mixin can be applied to any class that might benefit from the use of policies, as seen in the following
examples.

1 // Use policy_object for transactions
2 class base_txn extends policy_object #(uvm_sequence_item);

4« // Use policy_object for sequences
s class base_seq #(type REQ=uvm_sequence_item, RSP=REQ) extends policy_object #(
— uvm_sequence#(REQ, RSP));

7 // Use policy_object for configuration objects
s class cfg_object extends policy_object #(uvm_object);

Fig. 18: Example classes using the policy_object mixin

E. Protecting the policy queue enforces loosely coupled code

A subtle but significant additional benefit to using a base policy_object class along with the policy_container API
is the ability to mark the container’s policy queue as protected and prevent direct access to it.

The original implementation called set_item on each policy during the pre_randomize stage. That was necessary
because the policy_queue was public, so there was nothing to prevent callers from adding policies without linking them to
the target class.

Using an interface class and making the implementation private means the callers may only set or add policies using
the available interface class routines, and because those routines are solely responsible for applying policies, they can also
check compatibility (and filter incompatible policies) and call set_item immediately. This can be seen in the example
policy_object implementation above, in the usage of the protected function try_add_policy .

12

By calling set_item when the policy is added to the queue, all policies will be associated with the target item automatically,
so there is no need to do it during pre_randomize . This eliminates an easily-overlooked requirement for classes extending
policy_object to make sure they call super.pre_randomize() in their local pre_randomize function.

VII. CONCLUSION

The improvements to the policy package presented in this paper provide a more robust and efficient implementation of
policy-based constraints for SystemVerilog. The policy package is now capable of managing constraints across an entire class
hierarchy, and the policy definitions are tightly paired with the class they constrain. The use of macros reduces the expense of
defining common policies, while still allowing great flexibility in any custom policies necessary.

The complete policy package is available in Appendix A, with additional macro examples available in Appendix B. A
functional package is also available for download [6] which can be included directly in a project to start using policies
immediately.

REFERENCES

[1] J. Dickol, “SystemVerilog Constraint Layering via Reusable Randomization Policy Classes,” DVCon, 2015.

[2] J. Dickol, “Complex Constraints: Unleashing the Power of the VCS Constraint Solver,” SNUG Austin, September 29, 2016.

[3] K. Vasconcellos, J. McNeal, “Configuration Conundrum: Managing Test Configuration with a Bite-Sized Solution,” DVCon, 2021.
[4] C. McClish, “Bi-Directional UVM Agents and Complex Stimulus Generation for UDN and UPF Pins,” DVCon, 2021.

[5] J. Vance, J. Montesano, M. Litterick, J. Sprott, “Be a Sequence Pro to Avoid Bad Con Sequences,” DVCon, 2019.

[6] D. Mills, C. Haldane, “policy_pkg Source Code,” https://github.com/DillanCMills/policy_pkg.

13

APPENDIX A
PoLICY PACKAGE

A. policy_pkg.sv
| “include "uvm_macros.svh”

3 package policy_pkg;

5 import uvm_pkg: :*;

6

7 “include "policy.svh”

8

9 typedef policy policy_queuel[$];

1 “include "policy_imp.svh”

13 “include "policy_container.svh”
14 “include "policy_object.svh”

16 = endpackage: policy_pkg

B. policy.svh

| interface class policy;

3 pure virtual function string name();

4 pure virtual function string type_name();

5 pure virtual function string description();

6 pure virtual function bit item_is_compatible(uvm_object item);
7 pure virtual function void set_item(uvm_object item);

8 pure virtual function policy copy();

10 endclass: policy

C. policy_imp.svh

! virtual class policy_imp #(type ITEM=uvm_object) implements policy;

3 protected rand ITEM m_item;

4

5 pure virtual function string name();

6 pure virtual function string description();
7 pure virtual function policy copy();

8

9 virtual function string type_name();

10 return (ITEM::type_name);

1 endfunction: type_name

13 virtual function bit item_is_compatible(uvm_object item);
14 ITEM local_item;

15

16 return ((item != null) && ($cast(local_item, item)));

14

17 endfunction: item_is_compatible

19 virtual function void set_item(uvm_object item);

2 if (item == null)

21 “uvm_error("policy::set_item()", "NULL item passed”)

22

2 else if ((this.item_is_compatible(item)) && $cast(this.m_item, item)) begin

2 “uvm_info(

25 "policy::set_item()",

2 $sformatf(

27 "policy <%s> applied to item <%s>: %s"”,

28 this.name(), item.get_name(), this.description()

» Do

30 UVM_FULL

31)

2 this.m_item.rand_mode(1);

33

4 end else begin

35 “uvm_warning(

36 "policy::set_item()",

37 $sformatf(

38 "Cannot apply policy '%@s' of type '%@s' to target object '%0s'
« of incompatible type '%0s'"”,

39 this.name(), this.type_name(), item.get_name(),
— item.get_type_name()

40)

41)

2 this.m_item = null;

a3 this.m_item.rand_mode(@);

“ end

a5 endfunction: set_item

46
47 endclass: policy_imp

D. policy_container.svh

| interface class policy_container;

3 // Queries

4 pure virtual function bit has_policies();

5

6 // Assignments

7 pure virtual function void set_policies(policy_queue policies);
8 pure virtual function void add_policies(policy_queue policies);
9 pure virtual function void clear_policies();

10

1" // Access

12 pure virtual function policy_queue get_policies();

13

14 // Copy

15 pure virtual function policy_queue copy_policies();

7 endclass: policy_container

15

E. policy_object.svh

1 class policy_object #(type BASE=uvm_object) extends BASE implements
s policy_container;

3 protected rand policy_queue m_policies;

4

5 // Queries

6 virtual function bit has_policies();

7 return (this.m_policies.size() > 0);

8 endfunction: has_policies

9

10 // Assignments

1 virtual function void set_policies(policy_queue policies);
12 if(this.has_policies())

13 “uvm_warning("policy"”, "set_policies() replacing existing policies”)
14

15 this.m_policies = {};

16 foreach(policies[i]) try_add_policy(policies[i]);

17 endfunction: set_policies

18

19 virtual function void add_policies(policy_queue policies);
20 foreach(policies[i]) try_add_policy(policies[i]);

21 endfunction: add_policies

22

2 virtual function void clear_policies();

2 if (this.has_policies())

2 “uvm_info("policy”, $sformatf(”clearing [%0d] policies from %s",

< this.m_policies.size(), this.get_name()), UVM_FULL)

26

27 this.m_policies = {};

28 endfunction: clear_policies

29

30 // Access

3l virtual function policy_queue get_policies();

2 return (this.m_policies);

3 endfunction: get_policies

34

35 // Copy

36 virtual function policy_queue copy_policies();

37 copy_policies = {};

38 foreach(this.m_policies[i])

39 copy_policies.push_back(this.m_policies[i].copy());
4 endfunction: copy_policies

41

@ protected function void try_add_policy(policy new_policy);
43 if (new_policy.item_is_compatible(this)) begin

“ “uvm_info("policy”, $sformatf(”adding policy %s to %s",

< new_policy.name, this.get_name()), UVM_FULL)

45

46 new_policy.set_item(this);
47 this.m_policies.push_back(new_policy);
4 end else

16

49

50

51

52

53

54

55

56

57

“uvm_warning("policy”, $sformatf(”policy %s not compatible with target
— %s", new_policy.name, this.get_name()))
endfunction: try_add_policy

// Constructor
function new(string name="policy_object");
super.new(name) ;

endfunction: new

endclass: policy_object

17

APPENDIX B
PoLiCcY MACROS

A. policy_macros.svh

20

21

22

23

24

25

26

27

28

29

30

31

32

“ifndef__POLICY_MACROS__
“define __POLICY_MACROS__

//
// Embedded POLICIES class macros
//

“define start_policies(cls)
class POLICIES;
“m_base_policy(cls)

“define start_extended_policies(cls, parent)
class POLICIES extends parent::POLICIES;
“m_base_policy(cls)

“define end_policies
endclass: POLICIES

“define m_base_policy(cls)
typedef policy_imp#cls) base_policy;

//
// Policy template macros
//

“include "constant_policy.svh”
“include "fixed_policy.svh”
“include "member_policy.svh”
“include "range_policy.svh”

“endif

B. constant_policy.svh

// Full policy definition

“define constant_policy(POLICY, FIELD, TYPE, CONST)
“m_const_policy_class(POLICY, FIELD, TYPE, CONST)
“m_const_policy_constructor (POLICY)

// Policy class definition

// Note - type casting within the constraint expression requires TYPE to be a

// single keyword (e.g. int, addr_t), not a vector expression (e.g. bit [31:0])

“define m_const_policy_class(POLICY, FIELD, TYPE, CONST)

class POLICY" "~ _policy extends base_policy;
constraint c_policy_constraint {

(m_item != null) -> (m_item.FIELD == TYPE'(CONST));

3

18

s s s s

20

21

22

23

24

25

26

27

28

30

31

32

33

34

C. fixed_policy.svh

20

21

22

23

24

25

26

27

28

29

30

function new();
endfunction: new

virtual function string name();
return (C"POLICY™");
endfunction: name

virtual function string description();
return (" (FIELD==CONST)");
endfunction: description

virtual function POLICY™"_policy copy();

copy = new();
endfunction: copy

endclass: POLICY™ " _policy

// Policy constructor definition
“define m_const_policy_constructor(POLICY)
static function POLICY " _policy POLICY();

POLICY = new();

endfunction: POLICY

// Full policy definition

“define fixed_policy(POLICY, FIELD, TYPE, RADIX="%0p")
“m_fixed_policy_class(POLICY, FIELD, TYPE, RADIX)
“m_fixed_policy_constructor(POLICY, TYPE, RADIX)

// Policy class definition
“define m_fixed_policy_class(POLICY, FIELD, TYPE, RADIX="%0p")
class POLICY " _policy extends base_policy;

typedef TYPE 1 field_t;

local TYPE 1_val;
local string 1_radix=RADIX;

constraint c_policy_constraint {
(m_item != null) -> (m_item.FIELD == 1_val);
3

function new(TYPE value, string radix=RADIX);
this.set_value(value);
this.set_radix(radix);

endfunction: new

virtual function string name();
return (C"POLICY™");
endfunction: name

virtual function string description();
return ({
*"(FIELD=="",
$sformatf(l_radix, 1l_val),

19

= = ~ P A O

P A L L G O A S

31 "y

2 1)

3 endfunction: description

34

3 virtual function POLICY™ " _policy copy();
36 copy = new(l_val, 1_radix);

37 endfunction: copy

38

39 virtual function void set_value(TYPE value);
40 this.1l_val = value;

a endfunction: set_value

2

a3 virtual function TYPE get_value();

“ return (this.1l_val);

a5 endfunction: get_value

46

47 virtual function void set_radix(string radix);
a8 this.l_radix = radix;

49 endfunction: set_radix

50

51 virtual function string get_radix();

5 return (this.l_radix);

53 endfunction: get_radix

54 endclass: POLICY " _policy

55
ss // Policy constructor definition
57 “define m_fixed_policy_constructor(POLICY, TYPE, RADIX="%0p")

58 static function POLICY™ " _policy POLICY(TYPE value, string radix=RADIX);
59 POLICY = new(value, radix);
60 endfunction: POLICY

D. member_policy.svh

1 // Full policy definition

2 “define member_policy(POLICY, FIELD, TYPE, RADIX="%@p")
3 “m_member_policy_class(POLICY, FIELD, TYPE, RADIX)

4 “m_member_policy_constructor(POLICY, TYPE, RADIX)

¢ // Policy class definition

7 “define m_member_policy_class(POLICY, FIELD, TYPE, RADIX="%@p")
8 class POLICY™ " _policy extends base_policy;

9 typedef TYPE 1 _field_array_t[];

1 local 1_field_array_t m_values;

12 local bit 1_exclude;

13 local string m_radix=RADIX;

14

15 constraint c_policy_constraint {

16 (m_item != null) ->

17 ((1_exclude) * (m_item.FIELD inside {m_values}));
18 }

19

2 function new(

21 1 _field_array_t values,

20

P g i G g g O P

~

P G O

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

bit exclude=1"'b0,
string radix=RADIX

this.set_values(values);

this.set_exclude(exclude);

this.set_radix(radix);
endfunction: new

virtual function string name();
return (C"POLICY™");
endfunction: name

virtual function string description();

nn

string values_str = ;

foreach(m_values[i])
values_str = {

values_str,
$sformatf(m_radix, m_values[i]),
i == m_values.size()-1 2 "" : " "};
return ({
*"(FIELD ",
1_exclude ? "outside {" : "inside {",
values_str,

Il}) n
s

endfunction: description

virtual function POLICY™~_policy copy();
copy = new(m_values, 1_exclude, m_radix);
endfunction: copy

virtual function void set_values(l_field_array_t values);
this.m_values = values;
endfunction: set_values

virtual function 1_field_array_t get_values();
1_field_array_t 1_array;
foreach (this.m_values[i])
1_array[i] = this.m_values[i];
return (l_array);
endfunction: get_values

virtual function void set_exclude(bit exclude);
this.1l_exclude = exclude;
endfunction: set_exclude

virtual function bit get_exclude();
return (this.l_exclude);

endfunction: get_exclude

virtual function void set_radix(string radix);
this.m_radix = radix;

21

P G G O O G G g e g g g g g g P g g g

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

endfunction: set_radix

virtual function string get_radix();
return (this.m_radix);
endfunction: get_radix
endclass: POLICY™ " _policy

// Policy constructor definition
“define m_member_policy_constructor(POLICY, TYPE, RADIX="%0p")
typedef TYPE POLICY" " _array_t[];
static function POLICY™ " _policy POLICY(
POLICY" " _array_t values,
bit exclude=1'bo,
string radix=RADIX
)
POLICY = new(values, exclude, radix);
endfunction: POLICY

E. range_policy.svh

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

// Full policy definition

“define range_policy(POLICY, FIELD, TYPE, RADIX="%0p")
“m_range_policy_class(POLICY, FIELD, TYPE, RADIX)
“m_range_policy_constructor(POLICY, TYPE, RADIX)

// Policy class definition
“define m_range_policy_class(POLICY, FIELD, TYPE, RADIX="%@p")
class POLICY" "~ _policy extends base_policy;

local TYPE 1_low;

local TYPE 1_high;

local bit 1_exclude;
local string 1_radix=RADIX;

constraint c_policy_constraint {
(m_item != null) -> (
(1_exclude) *

(m_item.FIELD >= 1_low && m_item.FIELD <= 1_high)

DE
3

function new(
TYPE low,
TYPE high=1low,
bit exclude=1"ho,
string radix=RADIX

this.set_range(low, high);

this.set_exclude(exclude);

this.set_radix(radix);
endfunction: new

virtual function string name();

return (C"POLICY™");
endfunction: name

22

s s s

P g e

PP G G O S I A G S g

35

36 virtual function string description();

37 return ({

% " (FIELD ~",

3 1_exclude ? "outside [” : "inside [",
40 $sformatf(l_radix, 1_low),

41 5 0

@ $sformatf(l_radix, 1_high),

43 ! :I) "

“ K

45 endfunction: description

46

47 virtual function POLICY " _policy copy();

a copy = new(l_low, 1_high, 1_exclude, 1_radix);
4 endfunction: copy

50

51 virtual function void set_range(TYPE low, TYPE high);
5 if (low <= high) begin

53 this.1_low = low;

54 this.1l_high = high;

55 end else begin

56 this.1l_low = high;

57 this.1l_high = low;

58 end

59 endfunction: set_range

60

61 virtual function TYPE get_low();

) return (this.l_low);

I endfunction: get_low

64

65 virtual function TYPE get_high();

66 return (this.l_high);

67 endfunction: get_high

68

o virtual function void set_exclude(bit exclude);
70 this.1l_exclude = exclude;

7 endfunction: set_exclude

72

7 virtual function bit get_exclude();

7% return (this.l_exclude);

75 endfunction: get_exclude

76

7 virtual function void set_radix(string radix);
78 this.l_radix = radix;

7 endfunction: set_radix

80

81 virtual function string get_radix();

8 return (this.l_radix);

8 endfunction: get_radix

84 endclass: POLICY " _policy

85

ss // Policy constructor definition

87 “define m_range_policy_constructor(POLICY, TYPE, RADIX="%0p")
88 static function POLICY™ " _policy POLICY(

23

P G O O g T g g i g g gl O e G g g O

89

90

91

92

93

94

TYPE 1low,

TYPE high=low,

bit exclude=1'b0,

string radix=RADIX
);

POLICY = new(low, high, exclude, radix);

endfunction: POLICY

24

P

