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Abstract- Low level software-based tests are increasingly used for functional verification of complex SOCs. However, 

effective randomization of stimulus for these tests continues to be a challenge in the absence of SystemVerilog like 
randomization features in common programming languages. This paper presents a python library that can randomize 
complex C/C++ data types based on constraints and distributions, saving time and improving verification quality. 
 

I.   INTRODUCTION 
Verifying complex SOCs by running software or firmware tests is a proven strategy to identify bugs and gain 

confidence in the end-to-end working of the design. In this paper, we present an approach to use software defined 
data types for creating and randomizing stimulus. We demonstrate a method to extract complete information of data 
types defined in C/C++ and mirror them in Python. Further, we show how PyVSC features can be seamlessly 
integrated to generate constrained random stimulus. Finally, we look at methods to ingest the generated random 
stimulus in C/C++ based tests. 

Sleipnir’s source code can be found at: https://github.com/microsoft/Sleipnir 

 

 
 

II.   RELATED WORK 
[1] introduced PyVSC, a Python library that added native support for constraint and coverage features in Python. 

The library includes features to provide distribution hints and collect coverage data for generated stimulus. This 
paper builds on this work by allowing C/C++ data types like booleans, integers, arrays, structs, unions, enums etc. to 
be represented by equivalent classes for PyVSC. 



[2] introduced DatagenDV, a python based constrained random test stimulus framework. The authors present a 
method for generating C compatible test data from Python scripts. This paper builds on this work by extending the 
support for stimulus and also allowing C/C++ data types to be automatically imported to python world. This saves 
time by avoiding repetition of same collateral in two languages. It also avoids expensive debug by allowing for a 
single source of truth to be maintained and shared by architecture, design, verification and firmware teams. 

 
III.   DWARF EXTRACTION 

DWARF [3], which stands for “Debugging with Attributed Record Formats”, is a widely used debugging standard 
that offers a rich set of features for data representation and manipulation. It allows for the efficient handling of 
complex data structures and provides detailed insights into the verification process. DWARF is particularly useful 
for extracting type information, which can then be used to create stimulus. 

In DWARF debugging format, Debugging Information Entries (DIEs) are used to represent various entities in the 
source code, including structs, unions, and enums. Each DIE consists of a tag and a series of attributes that describe 
the entity. These DIEs are organized in a tree structure, where each node can have children or siblings, representing 
the hierarchical nature of the source code. 

DWARF Extraction Steps 

When compiling with GCC or LLVM, DWARF debugging information is embedded within the ELF (Executable 
and Linkable Format) file. Here’s a high-level overview of the process. 

Source Code Compilation: The source code is compiled into object files. During this step, the compiler generates 

DWARF debugging information when a “-g” option is added to the compile command. 

Linking: During the linking phase, the linker combines multiple object files into a single executable or shared library. 

The DWARF sections from each object file are merged into the corresponding sections in the final ELF file. 

Conversion to Python Classes: This ELF file is then loaded in python using elftools library. By parsing all the 

DIE information, equivalent data types are created in Python. 

 

DWARF Die Tag C/C++ 

Type 

Extracted Attributes Sleipnir Object 

DW_TAG_typedef typedef Aliases for other datatypes - - 

DW_TAG_structure_type struct DW_AT_byte_size 

Child DIEs: 

1. DW_TAG_member 

2. DW_AT_data_member_location 

3. DW_AT_bit_size 

4. 4. DW_AT_bit_offset 

Struct Size 

Members 

Member name 

Member byte offset 

Member size 

Member bit offset 

DfStruct 

DW_TAG_union_type union DW_AT_byte_size 

die’s children: DW_TAG_member 

Union Size 

Members 

DfUnion 

DW_TAG_enumeration_type enum 1. DW_TAG_enumerator 

2. DW_AT_const_value 

Enum name 

Enum value 

DfEnum 

DW_TAG_array_type array DW_AT_count Array size DfArray 

 



IV.   PYVSC INTEGRATION 
 

PyVSC [4], an open-source library, offers a powerful set of tools for constraint-based randomization in Python. 
PyVSC maintains its own random state, which ensures consistent results with the same seed. It provides a range of 
features for managing random stability and solving constraints, making it an invaluable tool for stimulus generation. 
PyVSC's ability to handle complex constraints and generate high-quality randomization helps us generate stimulus 
for different use cases. 

A. PyVSC Object creation 

Continuing from the previous section, each python datatype created after extraction from DWARF is overloaded 
with PyVSC features to provide support for randomization. This is done by having vsc.randobj decorator. 

 
@vsc.randobj 
class DfStruct(BfType): 
    """Holds a C struct defined in the ELF.""" 
 
    def __init__(self: "DfStruct", dwarf_type: dc.Struct, parent: "DfType" = None) -> None: 
        """Populate members based on data of the struct parsed from DWARF.""" 
        super().__init__(parent) 
 
        offsets = collections.OrderedDict() 
        for key, value in dwarf_type.members.items(): 

.. 

.. 
 
 

B. Adding Constraints 

Once the classes are decorated with randobj, we can now add static and dynamic constraints. 

@vsc.constraint 
def base_constr_xyz(self: dp.BfStruct) -> None: 
    """Add base constraints for XYZ struct.""" 
 
    self.struct_A.field_B <= enm.VALUE_A 
    self.struct_B.field_D[3:0].inside(vsc.rangelist(enm.VALUE_B,enm.VALUE_C)) 

 

Often, constraints are to be selectively applied to only a subset of packets generated. We can use 
dynamic_constraints to selectively apply them as needed. Here is an example: 

@vsc.dynamic_constraint 
def base_constr_xyz(self: dp.BfStruct) -> None: 
    """Add optional constraints for XYZ struct.""" 
 
    self.struct_A.field_B <= enm.VALUE_A 

 

C/C++ Type Equivalent Python class Randomization 

support 

Remarks 

typedef Class pointed to by the typedef - - 

struct DfStruct – Decorated with vsc.randobj 

All struct members added as 

“rand_attr” objects. 

@vsc.randobj 

class DfStruct(DfType): 

    .. 

    .. 

 

Constraints allowed 

on all members of 

the struct. 

 

Final value 

determined by 

combination of all 

the member values. 

DfStruct 



union DfUnion – Decorated with vsc.randobj 

All members added as “rand_attr” 

objects. Randomization is enabled 

(rand_mode) on only one member at a 

time. Random member picked via 

precedence rules. 

 

@vsc.randobj 

class DfUnion(DfType): 

    .. 

    .. 

 

for member in self.attrs: 

  if member is not 

rand_member:     

member. set_is_rand(False) 

 

Constraints allowed 

on only one 

member of the 

union. 

 

Final value 

determined by 

whichever member 

was set last. 

 

When random 

member is 

randomized, 

union’s value 

reflects the 

randomized value. 

DfUnion 

enum A singleton class that holds all the 

enums in a dictionary (key: value store). 

The values can be accessed using object 

accessor (.) to improve readability. E.g. 

abc = enm.MY_ENUM 

will assign the value of MY_ENUM to 

variable abc. 

Static values, no 

randomization 

support. 

DfEnum 

array Here, we inherit from python’s list type to 

allow indexed accessing and all other list’s 

capabilities for our array class. We also 

add all the elements of the array as 

vsc.attr. 

@vsc.randobj 

class DfArray(list, DfType): 

.. 

.. 

Constraints allowed 

on all elements of 

the array. 

Array size is fixed 

(as in DWARF). 

 

Final value 

determined by 

combination of all 

the member values. 

DfArray 

 

V.   COMPOSER 
The composer will convert user’s intent presented at a high level to a set of collaterals that need to be generated 

for the test to use at runtime. For example, let us assume a design takes one each of X struct and Y union as input. 
The composer takes a variable “N” from the user and generates N packets of X struct type and N packets of Y union 
type. The output is N number of DfStruct type and DfUnion in python. 



 
VI.   RANDOMIZER 

The randomizer is built on pyvsc. It takes in base constraints (static) and additional constraints (dynamic) based 
on the user inputs. The randomizer can also take constraints for a set of commands (in cases where there are 
command-command dependencies). The output of the randomizer is consumed by the data packer. 

Constraints that are required to generate valid packets are maintained as base constraints in python files. 
Constraints on top of them that are test to test dependent to exercise a given scenario may be supplied from input 
YAMLs by the user. Users can also disable randomization on unimportant fields to improve performance and reduce 
the state-space. 

 

 

VII.   STIMULUS PORTING 
Once random stimulus is generated, the values are packed using python’s struct module and exported to a file. In 

verification environment, this file is read using raw C/C++ pointers of the same type to get back values in the 
software-based tests. For faster debug, helper methods are provided to export the generated stimulus to human 
readable YAML format. By changing the endianness of the output, the generated stimulus can also be consumed by 
SystemVerilog functions for replay mechanisms in unit level testbenches. 



 

VIII.   EXAMPLE 
In this section, we will take a sample C struct to illustrate the use of Sleipnir for randomization. First, let us look 

at the setup required and the functions to call to ingest the struct details in python. Next, we will look at ways to 
provide user input for randomization. Finally, let us look at functions to call to randomize and generate output. 

A. Define datatypes in C files 

#include <stdio.h> 
 
// Define the Frame struct 
struct Frame { 
    int width; 
    int height; 
  int depth; 
    int count; 
}; 
 
int main() { 
    // Create an instance of Frame 
    struct Frame myFrame; 
} 

 
B. Generate ELF file 

Assuming the above definition is in the file frame.c, we use the following command to generate the ELF. 

gcc -g -c -o frame.elf frame.c 

C. Import the struct definitions in Sleipnir’s python environment 

The following code defines the path to the elf in the filesystem and imports the definitions in the ELF to the 
python environment. 



 

import os 
import pathlib 
 
import slp_dwarf_parser as dp 
 
ELF_PATH_FRAME = pathlib.Path().joinpath( 
    os.getenv("ELF_PATH"), "frame.elf" 
) 
"""Path to the ELF file that contains the DWARF information from xCP 
cores.""" 
 
# Check if Sleipnir's dependencies have been generated first 
if not ELF_PATH_FRAME.exists(): 
    msg = f"{ELF_PATH_FRAME} does not exist." 
    raise FileNotFoundError(msg) 
 
dwarfs_frame = dp.parse_dwarf_from_elf(ELF_PATH_FRAME) 
dp.enm = dp.BfEnums(dwarfs_frame["enums"]) 
dp.types = dwarfs_frame["types"] 
 

D. User input processing 
 

From Step C, we have C side data types and enums parsed in Python. Let us assume the user input is in a 

YAML file called input.yml. Let us consider a simple entry for input.yml. 
 
sleipnir: 
  num_frames: 8 
  constraints_frames: 
    small_height: frame.height < 128 
    odd_width_only: frame.width[0] == 1 
 
 
To ingest this user input in Sleipnir, we call: 
 
import slp_preprocessor as pp 

   suite = pp.process_in_yaml(input_yml) 
 
E. Randomization 

The following code generates 8 frames and then randomizes according to base constraints and user constraints 

as specified. 
 
import logging 
import slp_composer as composer 
import frames_randomizer as fr 



 
if not (num_frames := user_input.get("num_frames", False)): 
    logging.info( 
        "'num_frames' for 'frame' not set, skipping generating frames." 
    ) 
    return 
 
if not (rnd_cfg := user_input.get("constraints_frames", {})): 
    logging.info( 
        "'rnd_cfg' for 'frame' not set, no user constraints will be 
applied.", 
    ) 
 
# Generate frames and randomize them 
frames = composer.gen_frames(num_frames) 
fr.randomize_frames(frames, rnd_cfg) 

 
F. Output generation 

As a final step, we dump out the generated frames into files. First, we output the frames in packed binary format 
for consumption by the tests. Second, we also generate a YAML file for human readability and debug. 

 
# Generate the bin and yaml files 
bin_name_frames, yml_name_frames = 
dp.gen_bin_yaml_output_frames(output_path, frames) 
 
The generated YAML file will have contents like below. 

- width: 1 
  height: 94 
  depth: 42 
  num_frames: 8 
- width: 55 
  height: 39 
  depth: 78 
  num_frames: 1004 
.. 
.. 
 

IX.   PROJECT RESULTS 
Multiple design verification teams at Microsoft have leveraged Sleipnir to generate randomized test stimulus for 

their C/C++ based tests. Further, teams have successfully used Sleipnir to align on the common format for data types 
used in the ASIC designs. Sleipnir has been successfully used by Block level and SoC level design verification 
teams to maintain single source of truth (SSOT) and write complex constraints that dictate generation of valid, 
randomized samples of such data types. 

Before Sleipnir, randomization of packets used two approaches: (a) using “random” module in python to 
randomize simple integer type datatypes with range constraints and (b) use system Verilog based testbench for 
complete randomization. Randomization in python allowed quick development with good readability whereas 



System Verilog randomization allowed complex constraints at the cost of time intensive setup of testbench 
environment. Sleipnir strikes the balance in having the readability and maintainability of python coupled with the 
ability to write complex constraints that span multiple variables. It also aids portability of constraints from block 
level C tests to SoC level C tests and from project to project. At Microsoft, Sleipnir has been used across two 
generations of complex SoC projects. 

As an example, a complex design block containing over 60 fields that were spread across 13 different 
structs/unions was ported to Sleipnir. This removed the need to maintain duplicate definitions of these fields in 
python, helping remove over 2000 lines of code. The constraints for this block that spanned over 5000 lines in 
SystemVerilog took just 2 days of work for one engineer to write using PyVSC for Sleipnir. Together with similar 
efforts across 3 other blocks of similar complexity, Sleipnir also enabled generating end-to-end test scenarios where 
there are inter-block dependencies and constraints. This resulted in us running 10x more randomized scenarios for 
end-to-end cases as compared to earlier projects, resulting in early detection of critical bugs. 

We also noticed significant time savings with Sleipnir. First, the turn around time for any design changes reduced 
by 60% as any updates to the C source files automatically reflected in the design verification environment, negating 
the need for manual updates. Second, we saw setup of end-to-end test cases for the next generation of the design 
took 30% less time due to the ability to update constraints in python along with system Verilog constraints and the 
ability to port stimulus from block level to SoC level C tests. 

X.   LIMITATIONS AND FUTURE ENHANCEMENTS 
There are several areas where this framework can be improved upon. First, it currently lacks the support for 

parsing preprocessor elements like defines and macros. Since some values that are required for constraints are 
specified as defines and macros in C, adding this support further improves portability. Second, Sleipnir is written in 
Python and uses PyVSC as the underlying library for randomization. Due to the speed disadvantages of python and 
PyVSC, it imposes a cap on the number of constraints and size of randomization that can be performed. Third, 
special care needs to be taken for definition of structs and unions with members of non-standard widths as DWARF 
relies on the correct packing and interpretation of these data types by the compiler. 

XI.   SUMMARY 
Sleipnir provides a powerful method to generate constrained random stimulus for software-based testing. It 

provides a method to seamlessly port type definitions from C/C++ to Python for randomization. Use of Sleipnir 
results in faster turnaround time for software verification when design or architectural changes occur. It also reduces 
the need for handwritten code, helping eliminate scope of mistakes and cut verification time. Sleipnir also improves 
speed of verification by allowing software defined fields to be imported automatically. It improves verification 
quality by helping cover a larger state space with limited samples. We encourage readers to adopt this open source 
library for their own design verification needs as well as contribute to it with their enhancements. 
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