(2024

DESIGN AND VERIEICATION™

DVCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Four Problems with Policy-Based
Constraints and How to Fix Them

Dillan Mills Chip Haldane
Synopsys, Inc. The Chip Abides, LLC

Constraints and Policy Class Review

Constraints Review

Random objects and constraints are the foundational building blocks of
constrained random verification

Embedded fixed constraints are simple but lack flexibility

In-line constraints are marginally more flexible but their definitions are still
fixed within the calling context

In-line constraints must all be specified within a single call to randomize ()

Policy Class Review

Policy classes are a technique for applying constraints in a portable, reusable,
and incremental manner

e Leverage an aspect of “global constraints”, simultaneously solving constraints
across a set of random objects

e Randomizing a class that contains policies also randomizes the policies
e The policies contain a reference back to the container

e Consequently, the policy container is constrained by the policies it contains

@ell)

Policy Class Example: policy_base

class policy_base#(type ITEM=uvm_object);
ITEM item;

virtual function void set_item(ITEM item);
this.item = item;
endfunction
endclass

1
2
3
4
5
6
7

Policy Class Example: policy_list

1 class policy_list#(type ITEM=uvm_object) extends policy_base#(ITEM);

2 rand policy_base#(ITEM) policy[$];

3

4 function void add(policy_base#(ITEM) pcy);

5 policy.push_back(pcy);

6 endfunction

7

8 function void set_item(ITEM item);

9 foreach(policy[i]) policy[i].set_item(item);
10 endfunction

11 endclass

@

SYSTEMS,

policy_base and policy_list Summary

e These two base classes provide the core definitions for policies
e policy_base implements the hook back to the policy container

e policy_list organizes related policies into groups

e Parameterization requires a unique specialization per policy-enabled container

Policy Class Example: Implementation

1 class addr_policy extends
< policy_base#(addr_txn) ;

1 class addr_txn; 2 rand addr_t addrs[$];
2 rand addr_t addr; 3
3 rand policy_base#(addr_txn) policyl[$]; 4 function void add(addr_t addr);
4 5 addrs.push_back(addr) ;
5 function void pre_randomize; 6 endfunction
6 foreach(policy[il) 7
7 policyl[i].set_item(this); 8 constraint c_addr {
8 endfunction 9 item.addr inside {addrs};
9 endclass 10 ¥
11 endclass

e addr_txn.addr is constrained to a value added through addr_policy

2024
oESIGN AN VWREICATION =

DVCON

CONFERENCE AND EXHIBITION

Policy Class Example: Usage

1 class addr_constrained_txn extends addr_txn;

2 function new; .

w 13 W licy - . e Instantiate and
: & ll.r‘pol?cz#? dcrl—p: 1§y _ e randomize like
! por1cy_—1SLHLACIT_BXN) pey = Hews normal with a call to
5 addr_policy.add('h00000000) ; .

] txn.randomize ()

6 addr_policy.add('h10000000) ;
7 pcy.add(addr_policy) ; ° EaChva“Eandeq
o endfunction constrain addr

10 endclass

SYSTEMS,

Problem #1: Parameterized Policies

Problem #1: Parameterized Policies

e policy_base is parameterized to the class it constrains

Different specializations cannot be grouped and indexed

An extended class hierarchy with constrainable values in each level requires a
unique policy type and policy list for each level

Each list must be separately traversed and mapped back to the container
during pre_randomize

Users have to keep track of the different lists and which signals belong to each

Parameterized Policies: Example

class addr_p_txn extends addr_txn; 1 class addr_c_txn extends addr_p_txn;
2 rand bit parity; 2 function new;
3 rand policy_base#(addr_p_txn) 3 policy_list#(addr_txn) pcy = new;
— p_policy[$]; 4 policy_list#(addr_p_txn) p_pcy = new;
4 5 pcy.add(/*addr policies*/);
5 function void pre_randomize; 6 p_pcy.add(/*parity policies*/);
6 foreach(p_policy[i]) 7 this.policy = {pcy};
7 p_policy[il.set_item(this); 8 this.p_policy = {p_pcyl};
8 endfunction 9 endfunction
9 endclass 10 endclass

e This method will not scale—each additional subclass requires a new policy
type and list

2024
oESIGN AN VWREICATION =

DVCON

CONFERENCE AND EXHIBITION

Parameterized Policies: Solution

° Replace the 1 interfac§ class poli;y; .)))
. 2 pure virtual function void set_ltem(uvm_obJect item) ;
parameterized 3| endclass
policy base with a 4
ized 5 virtual class policy_imp#(type ITEM=uvm_object)
non-parameterize s ippilemesin pelicns
base 6 protected rand ITEM m_item;
7

M 8 virtual function void set_item(uvm_object item);
b ove parameters to 9 if (!$cast(m_item, item)) /* cleanup */;

an extension class 10 endfunction

that implements the 1}~ <@cie=

interface 13 typedef policy policy_queuel[$];

Ol

acellera) = s e (024

SYSTEMS INITIATIVE-

Policy Interface and Implementation
Classes

e Non-parameterized base enables all policies targeting a particular class
hierarchy to be stored in a single common policy_queue

e Parameterized policy_imp implements the base and provides core
functionality required by all policies

¢ No strong typing means all implementing classes must share a common base
class— uvm_object is a safe choice for UVM testbenches

e set_item() must handle the cases where an invalid type is passed in

Policy Definition Updates

e Policy definitions are mostly still the same as original classes

e Policy classes should be updated to extend the new policy_imp class

1 class addr_policy extends policy_imp#(addr_txn);

e Constraints should be written as implications in case item is missing

1 constraint c_addr {m_item != null -> m_item.addr inside {addrs};}

SYSTEMS,

Policy Implementation and Usage Updates

e The base txn class needs to inherit from uvm_object to be type-compatible

e The policies listin the base txn is replaced with a
rand policy_queue policies declaration

e Subclasses of the base txn class no longer need their own policy lists or
pre_randomize () functions

e The constrained txn can push all policies into the shared policy_queue in
the base txn class

Policy Usage Example

1 class addr_txn extends uvm_object;

2 rand policy_queue policies;

s // .

4 class addr_c_txn extends addr_p_txn;

5 function new;

6 // .

7 this.policies.push_back(/*addr_txn policies*/);

8 this.policies.push_back(/*addr_p_txn policies*/);
9 endfunction

10 endclass

@5

SYSTEMS INITi

Problem #2: Definition Location

Problem #2: Definition Location

e “Where should | define my policy classes?”

e Easy enough to stick them in a file close to the class they are constraining
e Better solution: directly embed policy definitions in the class they constrain

¢ Eliminates all guesswork about where to define and discover policies

e Embedded policies gain access to all members of their container class
(including protected properties and methods)

20

Embedded Policy Example

class addr_txn extends uvm_object;
class POLICIES;
/* policy definitions */
endclass
endclass

class addr_p_txn extends addr_txn;
class POLICIES extends

<« addr_txn::POLICIES;

9 /* additional policy definitions */

10 endclass

11 endclass

W 1 3 Otk W

class addr_c_txn extends addr_p_txn;
function new;
addr_c_txn: :POLICIES: :addr_policy
— a_pcy = new(/*...*%/);
this.policies.push_back(a_pcy);
endfunction
endclass

e Wrap the policies in a POLICIES
class to optimize organization

e Subclass POLICIES extend
from parent POLICIES

T

CON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATH

Optimize Further

1

2

3

e Mark properties protected ;‘
so they can only be 6
manipulated with policies 7

8

e Add static functions to 13
instantiate and initialize 11
policies with a single call i

14

15

16

SYSTEMS INITIATIVE-

21

class addr_txn extends uvm_object;
protected rand a_t addr;
class POLICIES;
// ... addr_policy definition
static function addr_policy FIXED_ADDR(a_t a);
FIXED_ADDR = new(a);
endfunction
endclass
endclass

class addr_c_txn extends addr_p_txn;
function new;
this.policies.push_back(
addr_c_txn: :POLICIES: : FIXED_ADDR('hFF00)) ;
endfunction
endclass

cesmmms2024
DV C Ol

e
]
|
N

Problem #3: Boilerplate Overload

23

Problem #3: Boilerplate Overload

¢ Policies require a class definition, a constructor, and a constraint (at a
minimum)

¢ Relatively unavoidable for complex policies

e Generic policy types that show up a lot can be simplified with a macro

e Use macros to set up the embedded POLICIES class, the policy definition,
and a static constructor

1
2
3
4
5

class addr_p_txn extends addr_txn;
“start_extended_policies(addr_p_txn, addr_txn)
“fixed_policy(PARITY_ERR, parity_err, bit)
“end_policies
endclass

24

Policy Macros

¢ |deal for properties with simple constraints, such as equality, range, or set
membership constraints

e Complex constraints with relationships between multiple properties are harder
to turn into a macro

e They can be left as-is, defined within the POLICIES class

e Define in a separate file and add to the POLICIES class with ~include

Problem #4: Unexpected Pol-
icy Reuse Behavior and Opti-

mizing for Lightweight Policies

26

Problem #4: Unexpected Policy Reuse Behavior
and Optimizing for Lightweight Policies

e Occasional unexpected behavior when re-randomizing objects with policies

Policies “remember” previous randomizations and wouldn’t reapply constraints

Sidestep the issue—keep policy classes extremely lightweight and adopt a
“use once and discard” approach

Introduce a copy() method that returns a fresh policy instance initialized to
the same state as the policy that implements it

Rely on static constructors to generate initialized policies automatically

More Improvements

to the Policy Package

28

More Improvements to the Policy Package

¢ Lots of nice improvements to the original policy package so far

o Still lacking many features that would be useful in real-world implementations

o Refer to the paper for complete code examples and a more detailed
discussion of the following features

1

29

Expanding the policy interface class

interface class policy;

pure
pure
pure
pure
pure
pure

endclass:

virtual
virtual
virtual
virtual
virtual
virtual

policy

function
function
function
function
function
function

string name();

string type_name() ;

string description();

bit item_is_compatible(uvm_object item);
void set_item(uvm_object item);

policy copyQ;

2024
oESIGN AN VWREICATION =
DVEC |

Vv Ol
ey

=
H O © 0 9 0 0k W N =

12

30

Better type safety checking and reporting in
policy_imp methods

virtual function void set_item(uvm_object item);
if (item == null)
“uvm_error(/* NULL item passed */)
else if ((this.item_is_compatible(item)) && $cast(this.m_item, item)) begin
“uvm_info(/* Policy applied */)
this.m_item.rand_mode(1);
end else begin
“uvm_warning(/* Incompatible type */)
this.m_item = null;
this.m_item.rand_mode(0);
end
endfunction

2024
oESIGN AN VWREICATION =

DVCON

CONFERENCE AND EXHIBITION

31

Replacing policy_list with policy_queue

e The original policy implementation used a policy_list to hold policies

e With the new implementation, all you need is a typedef queue

1 typedef policy policy_queue[$];

A policy_queue can hold any policy that implements the policy interface

Default queue methods can be used to aggregate policies

e Array literals can be used where a policy_queue is expected

¢ Define, initialize, aggregate, and pass policies all in a single line of code!

32

Standardize policy implementations with the
policy_container interface and policy_object mixin

interface class policy_container;
pure virtual function bit has_policies();

pure
pure
pure

pure

pure
endclass

virtual
virtual
virtual

virtual

virtual

function
function
function

function

function

void set_policies(policy_queue policies);
void add_policies(policy_queue policies);
void clear_policies();

policy_queue get_policies();

policy_queue copy_policies();

=W N =

e W N =

SYSTEMS INITIATIVE-

33

Using the policy_container interface
class and policy_object mixin

class policy_object #(type BASE=uvm_object) extends BASE implements policy_container;
protected policy_queue m_policies;
// ... fill out policy_container functions

endclass

// Use policy_object for transactions
class base_txn extends policy_object #(uvm_sequence_item);

// Use policy_object for sequences
class base_seq #(type REQ=uvm_sequence_item, RSP=REQ) extends policy_object #(
<> uvm_sequence#(REQ, RSP));

// Use policy_object for configuration objects
class cfg_object extends policy_object #(uvm_object);

CONFERENCE AND EXHIBITION

34

Protecting the policy queue enforces
loosely coupled code

e Using policy_object along with policy_container allows the policy
queue to be protected to prevent direct access
Original implementation required calling set_item on each policy during
pre_randomize

e Required because policy_list was public so callers could add policies

without linking to the target class

Making it private forces callers to set or add policies with the exposed
interface methods

These methods can also check compatibility and call set_item immediately
e Removes the reliance on pre_randomize

Conclusion

36

Conclusion

¢ Improvements to the original policy package provide a robust and efficient
implementation of policy-based constraints

e The policy package is now capable of managing constraints across an entire
class hierarchy

e The policy definitions are tightly paired with the class they constrain

e Macros reduce the expense of defining common policies while still allowing
flexibility for custom policies

e A complete implementation is available in the Appendix of the paper and on
GitHub* which can be included directly in a project to start using policies
immediately

"https://github.com/DillanCMills/policy_pkg

https://github.com/DillanCMills/policy_pkg

Questions?

