
Coverage is important in the verification cycle. But what if we are faced with a design that

involves mixed language like SV and SC with UVMC? Do we collect functional coverage from SC

models? Or do we ignore them and use coverage from the SV side in a verification environment?

SystemC is arguably becoming a standard and is widely being adopted by the industry for

system-level modeling, hence it makes sense that the verification is extensively performed.

However, when it comes to performing cover checks in the SystemC model directly, currently

there is no standard. Further investigation and research are needed to ensure IEEE-1647 e

functional coverage language features are supported in developing such libraries that would

eventually become a standard in the future. In this paper we have produced a familiar solution of

utilizing functional coverage usage by exporting them from SC to SV each time a sampling event

is called on the SC side.

A coverage model includes one or more cover groups, which represent a data set to be

sampled under certain conditions, typically with a sampling event. For each occurrence of the

sampling event, each cover item samples one value and assigns that value into bins that the user

has set.

The approach would be to send packets of data from the SC side to the SV side which can be

used for sampling functional coverage each time the sample event is triggered. This way,

verification of highly abstract components and system models can be done using tlm ports and

sockets and the data can then be de-serialized on the SV side for functional coverage.

In this example, we have a producer_uvm class, which derives from our generic SC

producer. We then pack that class that connects to the SV side by using a simple initiator

socket and we send a generic payload in the form of a transaction using TLM 2.0.

In the SV side, a simple SV consumer TLM model prints received transactions of type

uvm_tlm_generic_payload. The class uvm_tlm_generic_payload enables it to be generated

in sequences and transported to drivers through sequencers. It consist of many data types

like m_command, m_data[], m_byte_enable,q etc.

In the SC side, we use a converter class, which means the transaction definitions are

allowed to be completely different. The transaction classes do not have to have the same

declaration number, type, and order in both SC and SV. The converter can adapt

different transaction definitions and at the same time serialize the data. Functional

coverage is applied when the transaction is sent as TLM transactions from SC to SV.

The producer class contains the input transactions which are packed and sends it to the

SV side. The producer sends TLM transactions in the form of blocking transport to SV

every time. A sampling event is reached when the packets are sent to the SV side.

A sampling event is triggered each time the b_transport from the SC side sends a

TLM transaction and on the SV side, the coverage function is sampled.

Vishal Baskar

Siemens Industry Software, 46871 Bayside Parkway, Fremont,
CA 94538|Vishal.Baskar@siemens.com

Do not forget to ‘Cover’ your SystemC
code with UVMC

DIAGRAM

INTRODUCTION

COVERAGE BASICS

EXAMPLE 1

EXAMPLE 2

CONCLUSION AND FUTURE WORK

ABBREVIATIONS
SC: SystemC

SV: SystemVerilog

TLM: Transaction Level Modelling
UVMC: Universal Verification Methodology Connect

This paper discusses two examples. One would deal with utilizing TLM sockets and generic

payloads and the other with transaction packets made from the template specialization class.

In preparation for this approach, we attempted the use of tlm sockets and ports present in
examples 1 and 2, respectively.
• In example 1, we utilized the uvm_tlm_generic_payload transaction which had data

members like address, data, command, etc. Once we were able to identify the width and
bins to cover, we were getting good results as seen in the results sections.

• In the second example, we used a template class <T> to send packets containing addresses
and data to the SV side from the SC side. We were able to capitalize on the do_pack and
do_unpack methods of UVM and the coverage results show that all bins in the coverpoint
were covered.

• Rather than having a class-based transaction passed as an object to a covergroup, utilizing
constraint randomization and assertion on tlm_generic_payloads would certainly be more
helpful. It would also help improve the overall coverage goal and to identify holes in coverage
space. This can also be scaled up to signal processing models that are designed in SC. It
would be very beneficial to identify how various signals that are sent in, are sampled and to
verify them using coverage, constraint randomization, etc

