DESIGN AND VERIFICATION™

accellera Code with UV BV T

. CONFERENCE AND EXHIBITION
Vishal Baskar

SYSTEMS INITIATIVE Siemens Industry Software, 46871 Bayside Parkway, Fremont,
CA 94538|Vishal.Baskar@siemens.com FEBRUARY 27-MARGH 2, 2023

Do not forget to ‘Cover’ K,/IOCIJH SystemC 2023

ABBREVIATIONS COVERAGE BASICS
SC: SystemC

SV: SystemVerilog A coverage model includes one or more cover groups, which represent a data set to be
TLM: Transaction Level Modelling sampled under certain conditions, typically with a sampling event. For each occurrence of the

g e sampling event, each cover item samples one value and assigns that value into bins that the user
UVMC: Universal Verification Methodology Connect has set

INTRODUCTION The approach would b'e to send packets of dgta from the SC side to thg S\(side whlchlcan be
used for sampling functional coverage each time the sample event is triggered. This way,

Coverage is important in the verification cycle. But what if we are faced with a design that verification of highly abstract components and system models can be done using tim ports and
involves mixed language like SV and SC with UYMC? Do we collect functional coverage from SC sockets and the data can then be de-serialized on the SV side for functional coverage.

models? Or do we ignore them and use coverage from the SV side in a verification environment?
Name |Missing Bins | Total Bins |96 Hit |Coverage |Status

. & @' /user_pkg/consumer/consumer__1/sv_header 0 10 100.00% 100.00%
SystemC is arguably becoming a standard and is widely being adopted by the industry for g.m—['; g T 0 1 100.00% 100,00%:

system-level modeling, hence it makes sense that the verification is extensively performed. ' ntl)ltgal — é
However, when it comes to performing cover checks in the SystemC model directly, currently = @ CMD 100.00% 100.00%
there is no standard. Further investigation and research are needed to ensure IEEE-1647 e %a" *
functional coverage language features are supported in developing such libraries that would il env.cons.sv_header igg:gg‘;‘; i%:%g’;
eventually become a standard in the future. In this paper we have produced a familiar solution of

utilizing functional coverage usage by exporting them from SC to SV each time a sampling event = igg:ggz‘o’

is called on the SC side.

DIAGRAM EXAMPLE 1

In this example, we have a producer_uvm class, which derives from our generic SC
producer. We then pack that class that connects to the SV side by using a simple initiator

|

|

: socket and we send a generic payload in the form of a transaction using TLM 2.0.

Svsine | seeoe In the SV side, a simple SV consumer TLM model prints received transactions of type

\ :

|

|

|

|

|

uvm_tlm_generic_payload. The class uvm_tim_generic_payload enables it to be generated
in sequences and transported to drivers through sequencers. It consist of many data types
.‘ sample Point like m_command, m_data[], m_byte_enable,q etc.

Unpack the data Utilize tim blocking ports using sockets void nm() { class consumer extends u“n_cotnponent;

tlm_generic_payload gp; uvvm_tlm _b_target_socket #{consumer) in;

-1 - - UVM-CONNECT - . e . . .

char unsigned data[8]://Original uvm_tlm_gp t; /TLM Generic Payload on the receiver side.
Pack data into transactions gp-set_data_ptr(data): //Original covergroup sv_header with function sample(uvm tlm gp ¢);

sc_time delay:

I TYPE : coverpoint t .command {
) : while (num_trans--) {

l .

|

|

|

ignore_bins nop = {0}:
bins all = {[1:5]}: }

Sample covergroups

gp.set_command(TLM_WRITE_COMMANDY); ADDR : coverpoint t.m_address {
} bins bl = {[0:'hff]};
out->b_transport(gp,delay); /Sampling point triggere bins b2 = {[20'hfiftf:28'hfffffff]};

This paper discusses two examples. One would deal with utilizing TLM sockets and generic —
payloads and the other with transaction packets made from the template specialization class. ap write(gp): } ap.write(t):

BT

sv_header.sample(t);

EXAMPLE 2 A sampling event is triggered each time the b_transport from the SC side sends a
In the SC side, we use a converter class, which means the transaction definitions are TLM transaction and on the SV side, the coverage function is sampled.

allowed to be completely different. The transaction classes do not have to have the same _
declaration number, type, and order in both SC and SV. The converter can adapt

different t.ransacftion definitions and at the same time serialize the data. Functional CONCLUSION AND FUTURE WORK

coverage is applied when the transaction is sent as TLM transactions from SC to SV. _ _ _
The producer class contains the input transactions which are packed and sends it to the In preparation for this approach, we attempted the use of fim sockets and ports present in

. . . . examples 1 and 2, respectively.
SV side. The producer sends TLM transactions in the form of blocking transport to SV - In example 1, we utilized the uvm tim_generic_payload transaction which had data

every time. A sampling event is reached when the packets are sent to the SV side. members like address, data, command, etc. Once we were able to identify the width and
bins to cover, we were getting good results as seen in the results sections.
In the second example, we used a template class <T> to send packets containing addresses
and data to the SV side from the SC side. We were able to capitalize on the do_pack and
do_unpack methods of UVM and the coverage results show that all bins in the coverpoint
sc_port<tlm_blocking_ transport_if<T>> out; ADD : coverpoint t.addr { were covered.
¥ illegal_bins zero = {0}: Rather _than having a _class-based trqnsaction passed as an object to a covergroup, utilizing
SC_HAS_PROCESS(producer); bins b = {[0:32 hfFFEEEEE]) constraint randomization fand assertion on tim_generic_payloads Iwoulld certalnlly be more
void run() { P —— . helpful. It would also help improve the oyerall coverage goal and to identify hol_es in coverage
bins b2 = {[32 AR space. This can also be scaled up to signal processing models that are designed in SC. It
f‘> bins max = {[40hFEFFFE 64 hFEFFFFHFFERT) - would be very beneficial to identify how various signals that are sent in, are sampled and to
}

template <class T> covergroup sv_header with function sample(T t);

class producer : public sc_module { option.per_instance = 1;

public:

packet::iemd t emd; X . . e
; ‘ verify them using coverage, constraint randomization, etc
int unsigned addr:

vector<char> data;
VALO : coverpoint t.data[0]{bins a0 = {[0:'hff]}:}

temd = cmd: VALL : coverpoint t.data[1]{bins al = {[0:'hff]}:}

taddr = addr;

@pm{t, delay): //Sampling point triggered VAL7 : coverpoint t.data[7]{bins a7= {[0:'hff]}:}
} endgroup

\ #(delay.get_realtime(lns,1e-9)); E SI E M E N S

sv_header.sample(t);//Sample the coverage i

© Accellera Systems Initiative

