
Gherkin Implementation in SystemVerilog Brings
Agile Behavior-Driven Development to UVM

William L. Moore
Paradigm Works

The Problem with Documentation

• Static
• Asynchronous
• Separate
• Richly formatted
• Specialized
• Causes bugs!

Root cause of ASIC functional flaws

Source: Wilson Research Group and Siemens EDA, 2022 Functional Verification Study
Unrestricted|© Siemens 2022|Functional Verification Study

Ro
ot

 c
au

se
 o

f f
un

ct
io

na
l f

la
w

s

2016 2018 2020 2022

BDD

Discovery
Workshop
Formulate
Scenarios

Implement
Increment
Automate

Tests
Execute

Specification

Business

Developer

Tester Computer

Behavior-Driven Development (BDD)

• Agile software methodology
• Team collaboration and

communication
• Concrete examples
• Natural language text files
• Automated executable

specifications
• Living documentation

Illustrative Example

• Arithmetic logic unit (ALU)
• Integer division feature
• Behavior
• Corner cases and exceptions
• Examples
• Questions

ALU
Division

Integer division:
The remainder
is discarded

Example:
15 / 4 = 3

Example:
10 / 0
gives a
divide-by-zero
ERROR!

What
about
negative
numbers?

Discovery
Workshop

Gherkin
• Executable specification

AKA feature file
• Open-source

domain-specific language
• Plain text file
• Natural language
• Keywords provide

structure
• Given-When-Then steps

This Gherkin feature file's name is alu_division.feature

Feature: Arithmetic Logic Unit division operations

 The arithmetic logic unit performs integer division.

 Scenario: In integer division, the remainder is discarded
 Given operand A is 15 and operand B is 4
 When the ALU performs the division operation
 Then the result should be 3
 And the DIV_BY_ZERO flag should be clear

 Scenario: Attempting to divide by zero results in an error
 Given operand A is 10 and operand B is 0
 When the ALU performs the division operation
 Then the DIV_BY_ZERO flag should be raised

Formulate
Scenarios

This Gherkin feature file's name is alu_division.feature

Feature: Arithmetic Logic Unit division operations

 The arithmetic logic unit performs integer division.

Scenario: In integer division, the remainder is discarded
 Given operand A is 15 and operand B is 4
 When the ALU performs the division operation
 Then the result should be 3
 And the DIV_BY_ZERO flag should be clear

Scenario: Attempting to divide by zero results in an error
 Given operand A is 10 and operand B is 0
 When the ALU performs the division operation
 Then the DIV_BY_ZERO flag should be raised

BDD for Silicon Projects

• RTL and verification environments are code
• Same roles in silicon as software
• Different increments
• Feature could be a verification component
• No native SystemVerilog support for Gherkin
• Until…

Bathtub

• Pure native SystemVerilog library
• Built on UVM
• Runs in simulator
• Parses Gherkin files
• Executes specification against DUT
• Runs virtual sequences on environment’s

sequencer

BDD
Automated
Tests
Helping
Teams
Understand
Behavior

Bathtub Flow Discovery
Workshop

Automate
Tests

Implement
Increment

Execute
Specification

informal notes

Gherkin feature file

Bathtub test

step definitions

pass/fail

RTL

SystemVerilog simulator
with UVM, DUT-specific
test bench, Bathtub

Formulate
Scenarios

• Map Gherkin steps to SystemVerilog
tasks
• Encapsulate tasks, assertions in UVM

sequences
• Parameterized step definitions
• Class needed for every step

• Write a Bathtub UVM test
• Instantiate bathtub object
• Configure with feature file names and

virtual sequencer

• Compile and simulate until tests pass

Sample Step Definition
// Given operand A is 15 and operand B is 4

class set_operand_A_and_B_vseq
extends alu_base_vsequence
implements bathtub_pkg::step_definition_interface;

`Given("operand A is %d and operand B is %d")

int operand_A, operand_B;

`uvm_object_utils(set_operand_A_and_B_vseq)

function new (string name);

super.new(name);

endfunction : new

virtual task body();

// Extract the parameters

`step_parameter_get_args_begin()

operand_A = `step_parameter_get_next_arg_as(int);

operand_B = `step_parameter_get_next_arg_as(int);

`step_parameter_get_args_end

// Do the work using the API in the base sequence

super.set_operand_A(operand_A);

super.set_operand_B(operand_B);

endtask : body

endclass : set_operand_A_and_B_vseq

Automate
Tests

Bathtub and UVM
• Shaded regions are

Bathtub-specific
• Unshaded regions are

reused unchanged
• Resource database stores

step definitions
• Bathtub parses Gherkin,

collects steps
• Runs step definitions on

virtual sequencer

test bench
uvm_test

uvm_env
uvm_agent

uvm_driver

uvm_sequencer
uvm_sequence

uvm_sequencer
uvm_sequence

bathtub
runner

parser

feature
files

interface

DUT modules
uvm_resource_db

step definitions

Automate
Tests

Bathtub Operation at Time Zero
`Given("operand A is %d and operand B is %d")

Scope Name Value
operand A is ([0-9]+) and operand B is ([0-9]+) bathtub_pkg::step_definition_interface set_operand_A_and_B_vseq

the ALU performs the division operation bathtub_pkg::step_definition_interface do_division_operation_vseq

The result should be ([0-9]+) bathtub_pkg::step_definition_interface check_result_vseq

The DIV_BY_ZERO flag should be (\S*) bathtub_pkg::step_definition_interface check_DIV_BY_ZERO_flag_vseq

uvm_resource_db#(uvm_object_wrapper)::set(
 "operand A is ([0-9]+) and operand B is ([0-9]+)",
 "bathtub_pkg::step_definition_interface",
 set_operand_A_and_B_vseq::get_type());

Macro with parameterized template
string from step definition.

Bathtub converts “%d” to regular
expression “([0-9]+)” and stores the step
definition object wrapper in the resource
database. The name is a constant.

Execute
Specification

Bathtub Runtime Operation
Given operand A is 15 and operand B is 4

uvm_resource_db#(uvm_object_wrapper)::get_by_name(
 "operand A is 15 and operand B is 4",
 "bathtub_pkg::step_definition_interface", 1);

Scope Name Value
operand A is ([0-9]+) and operand B is ([0-9]+) bathtub_pkg::step_definition_interface set_operand_A_and_B_vseq

the ALU performs the division operation bathtub_pkg::step_definition_interface do_division_operation_vseq

`uvm_do_on(sequence, sequencer);

Finds match, instantiates sequence from object wrapper, and configures instance with feature file step text.

Step text from feature file.

Runs sequence. Step parameter macros in body() task use $sscanf()
and format string to extract values 15 and 4 from step text.

Bathtub looks for regular expression in
resource database that matches step text.

Execute
Specification

Bathtub Results

• Ran on two SoC project blocks
• Success from discovery workshop to regression
• BDD is not verification, but dovetails
• Feature file & step definition advantages, challenges
• Communication, planning, reuse, debug benefits
• Power of SystemVerilog language
• Available open-source at https://github.com/williaml33moore/bathtub

https://github.com/williaml33moore/bathtub

Questions

Thank you!

