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The Problem with Documentation

• Static
• Asynchronous
• Separate
• Richly formatted
• Specialized
• Causes bugs!

Root cause of ASIC functional flaws

Source: Wilson Research Group and Siemens EDA, 2022 Functional Verification Study
Unrestricted|© Siemens 2022|Functional Verification Study
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Behavior-Driven Development (BDD)

• Agile software methodology
• Team collaboration and 

communication
• Concrete examples
• Natural language text files
• Automated executable 

specifications
• Living documentation



Illustrative Example

• Arithmetic logic unit (ALU)
• Integer division feature
• Behavior
• Corner cases and exceptions
• Examples
• Questions

ALU 
Division

Integer division:
The remainder 
is discarded

Example:
15 / 4 = 3 

Example:
10 / 0
gives a
divide-by-zero
ERROR!  

What 
about 
negative 
numbers?

Discovery 
Workshop



Gherkin
• Executable specification 

AKA feature file
• Open-source

domain-specific language
• Plain text file
• Natural language
• Keywords provide 

structure
• Given-When-Then steps

# This Gherkin feature file's name is alu_division.feature

Feature: Arithmetic Logic Unit division operations

 The arithmetic logic unit performs integer division.

 Scenario: In integer division, the remainder is discarded
  Given operand A is 15 and operand B is 4
  When the ALU performs the division operation
  Then the result should be 3
  And the DIV_BY_ZERO flag should be clear

 Scenario: Attempting to divide by zero results in an error
  Given operand A is 10 and operand B is 0
  When the ALU performs the division operation
  Then the DIV_BY_ZERO flag should be raised

Formulate 
Scenarios

# This Gherkin feature file's name is alu_division.feature

Feature: Arithmetic Logic Unit division operations

 The arithmetic logic unit performs integer division.

Scenario: In integer division, the remainder is discarded
 Given operand A is 15 and operand B is 4
 When the ALU performs the division operation
 Then the result should be 3
 And the DIV_BY_ZERO flag should be clear

Scenario: Attempting to divide by zero results in an error
 Given operand A is 10 and operand B is 0
 When the ALU performs the division operation
 Then the DIV_BY_ZERO flag should be raised



BDD for Silicon Projects

• RTL and verification environments are code
• Same roles in silicon as software
• Different increments
• Feature could be a verification component
• No native SystemVerilog support for Gherkin
• Until…



Bathtub

• Pure native SystemVerilog library
• Built on UVM
• Runs in simulator
• Parses Gherkin files
• Executes specification against DUT
• Runs virtual sequences on environment’s 

sequencer

BDD
Automated
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Behavior



Bathtub Flow Discovery 
Workshop

Automate 
Tests

Implement 
Increment

Execute 
Specification

informal notes

Gherkin feature file

Bathtub test

step definitions

pass/fail

RTL

SystemVerilog simulator 
with UVM, DUT-specific 
test bench, Bathtub

Formulate 
Scenarios

• Map Gherkin steps to SystemVerilog 
tasks
• Encapsulate tasks, assertions in UVM 

sequences
• Parameterized step definitions
• Class needed for every step

• Write a Bathtub UVM test
• Instantiate bathtub object
• Configure with feature file names and 

virtual sequencer

• Compile and simulate until tests pass



Sample Step Definition
// Given operand A is 15 and operand B is 4

class set_operand_A_and_B_vseq
extends alu_base_vsequence
implements bathtub_pkg::step_definition_interface;

`Given("operand A is %d and operand B is %d")

int operand_A, operand_B;

`uvm_object_utils(set_operand_A_and_B_vseq)

function new (string name);

super.new(name);

endfunction : new

virtual task body();

// Extract the parameters

`step_parameter_get_args_begin()

operand_A = `step_parameter_get_next_arg_as(int);

operand_B = `step_parameter_get_next_arg_as(int);

`step_parameter_get_args_end

// Do the work using the API in the base sequence

super.set_operand_A(operand_A); 

super.set_operand_B(operand_B);

endtask : body

endclass : set_operand_A_and_B_vseq

Automate 
Tests



Bathtub and UVM
• Shaded regions are 

Bathtub-specific
• Unshaded regions are 

reused unchanged
• Resource database stores 

step definitions
• Bathtub parses Gherkin, 

collects steps
• Runs step definitions on 

virtual sequencer

test bench
uvm_test

uvm_env
uvm_agent

uvm_driver

uvm_sequencer
uvm_sequence

uvm_sequencer
uvm_sequence

bathtub
runner

parser

feature 
files

interface

DUT modules
uvm_resource_db

step definitions

Automate 
Tests



Bathtub Operation at Time Zero
`Given("operand A is %d and operand B is %d")

Scope Name Value
operand A is ([0-9]+) and operand B is ([0-9]+) bathtub_pkg::step_definition_interface set_operand_A_and_B_vseq

the ALU performs the division operation bathtub_pkg::step_definition_interface do_division_operation_vseq

The result should be ([0-9]+) bathtub_pkg::step_definition_interface check_result_vseq

The DIV_BY_ZERO flag should be (\S*) bathtub_pkg::step_definition_interface check_DIV_BY_ZERO_flag_vseq

uvm_resource_db#(uvm_object_wrapper)::set(
  "operand A is ([0-9]+) and operand B is ([0-9]+)",
  "bathtub_pkg::step_definition_interface",
  set_operand_A_and_B_vseq::get_type());

Macro with parameterized template 
string from step definition.

Bathtub converts “%d” to regular 
expression “([0-9]+)” and stores the step 
definition object wrapper in the resource 
database. The name is a constant.

Execute 
Specification



Bathtub Runtime Operation
Given operand A is 15 and operand B is 4

uvm_resource_db#(uvm_object_wrapper)::get_by_name(
 "operand A is 15 and operand B is 4",
 "bathtub_pkg::step_definition_interface", 1);

Scope Name Value
operand A is ([0-9]+) and operand B is ([0-9]+) bathtub_pkg::step_definition_interface set_operand_A_and_B_vseq

the ALU performs the division operation bathtub_pkg::step_definition_interface do_division_operation_vseq

`uvm_do_on(sequence, sequencer);

Finds match, instantiates sequence from object wrapper, and configures instance with feature file step text.

Step text from feature file.

Runs sequence. Step parameter macros in body() task use $sscanf() 
and format string to extract values 15 and 4 from step text.

Bathtub looks for regular expression in 
resource database that matches step text.

Execute 
Specification



Bathtub Results

• Ran on two SoC project blocks
• Success from discovery workshop to regression
• BDD is not verification, but dovetails
• Feature file & step definition advantages, challenges
• Communication, planning, reuse, debug benefits
• Power of SystemVerilog language
• Available open-source at https://github.com/williaml33moore/bathtub

https://github.com/williaml33moore/bathtub


Questions

Thank you!


