2024

DESIGN AND VERIFICATION ™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Gherkin Implementation in SystemVerilog Brings
Agile Behavior-Driven Development to UVM

William L. Moore
Paradigm Works

1 PARADIGM

WORKS SYSTEMS INITIATIVE

The Problem with Documentation

Root cause of ASIC functional flaws

* Static
* Asynchronous

70%

60%

50%

40%

30%

20%

b
0%

DESIGN ERROR CHANGES IN INCORRECT or FLAW IN INTERNAL IP FLAW IN EXTERNAL IP

* Causes bugs! SPECFCATON CoueLeTe
2016 =2018 = 2020 = 2022

* Separate

* Richly formatted

Root cause of functional flaws

* Specialized

Source: Wilson Research Group and Siemens EDA, 2022 Functional Verification Study
Unrestricted | © Siemens 2022 | Functional Verification Study

(2024

DESIGN AND VERIEICATION™

DV

CONFERENCE AND EXHIBITION

Behavior-Driven Development (BDD)

* Agile software methodology °b- Discove

e Team collaboration and gl sl
communication Business ate

* Concrete examples ®
* Natural language text files |.

Developer Automate
e Automated executable Tests

specifications
* Living documentation Tester e

.

Computer

Discovery
Workshop

llustrative Example ALU
Division
what
* Arithmetic logic unit (ALU) about
* Integer division feature Integer division: negative 5
The remainder y\uw\bZVS-
* Behavior is discarded

* Corner cases and exceptions

* Examples f’;a;mzle_:) i)ém;mgle:

* Questions gives a
divide-by-zero
ERROR!

DESIGN AND @N ™

Gherkin

* Executable specification
AKA feature file

* Open-source
domain-specific language

* Plain text file
* Natural language

* Keywords provide
structure

* Given-When-Then steps

~ ;‘ - \

Formulate
Scenarios

This Gherkin feature file's name is alu division.feature

Feature: Arithmetic Logic Unit division operations
The arithmetic logic unit performs integer division.

Scenario: In integer division, the remainder is discarded
Given operand A is 15 and operand B is 4
When the ALU performs the division operation
Then the result should be 3
And the DIV _BY_ZERO flag should be clear

Scenario: Attempting to divide by zero results in an error
Given operand A is 10 and operand B is ©
When the ALU performs the division operation
Then the DIV_BY ZERO flag should be raised

DESIGN AND @N ™

DVCON

CONFERENCE AND EXHIBITION

BDD for Silicon Projects

e RTL and verification environments are code
 Same roles in silicon as software
e Different increments

* Feature could be a verification component

* No native SystemVerilog support for Gherkin
e Until...

@ \ DESIGN AND VERIFICATION™
EEEEEEEEEEEEEEEEEEEEEEE
sysre

Bathtub

BDD

* Pure native SystemVerilog library Automated
+ Built on UVM Tests
* Runs in simulator Helping
* Parses Gherkin files LICEI
* Executes specification against DUT Understand
* Runs virtual sequences on environment’s Behavior

sequencer

SYSTEMS INITIATIVE. ~_

BathtUb F‘OW § Formulate

Scenarios
 Map Gherkin steps to SystemVerilog
tasks
* Encapsulate tasks, assertions in UVM Implement
sequences Increment

* Parameterized step definitions
e Class needed for every step

e Write a Bathtub UVM test Automate

* Instantiate bathtub object Tests

e Configure with feature file names and
virtual sequencer pass/fail SystemVerilog simulator
with UVM, DUT-specific
* Compile and simulate until tests pass test bench, Bathtub

— — 2024
S S DESIGN AND VERIEICATION™

DVCON

NNNNNNNNNNNNNNNNNNNNNNN

Automate

Tests

Sample Step Definition

// Given operand A is 15 and operand B is 4 virtual task body();

class set_operand_A_and_B_vseq // Extract the parameters
extends alu _base vsequence

implements bathtub_pkg::step definition_interface; “step_parameter_get_args_begin()

operand_A

“step_parameter_get_next_arg_as(int);

operand_B

“Given("operand A is %d and operand B is %d") “step_parameter_get_next_arg_as(int);

"step_parameter_get args end
int operand_A, operand_B;

// Do the work using the API in the base sequence
“uvm_object_utils(set_operand_A _and_B_vseq) super.set_operand_A(operand_A);
super.set_operand_B(operand_B);

endtask : body

function new (string name);

super.new(name);

endfunction : new endclass : set _operand A _and B _vseq

DESIGN AND Q;;N ™

B AVA Ry =}

CONFERENCE AND EXHIBITION

Automate
Tests

Bathtub and UVM

[test bench)
* Shaded regions are uym_test \ et
. o uvm_env
Bathtub-specific v agent) fowm-sequencer) | | fanner
* Unshaded regions are uvm_sequencer HmSEEEREE T | —=
reused unchanged monAnent - i
—_— T
 Resource database stores pvm.driver | ‘ ’
step definitions - ’ / \
* Bathtub parses Gherkin, interface |
|
collects steps DUT modules e
L step definitions !
* Runs step definitions on L feature JJ
virtual sequencer ‘ files

- 2024
f / T » \\\ DESIGN AND VERIEICATION™
. = A A A AL A A AN A N A\ NN A\ A\ S T T T e b asanion
g gty

Bathtub Operation at Time Zero

Execute

Specification

“Given("operand A is %d and operand B is %d")

\!

Macro with parameterized template

—— string from step definition.

uvm_resource_db#(uvm_object wrapper)::set(

"operand A is ([@-9]+) and operand B is ([0-9]+)",

"bathtub_pkg: :step_definition_interface",
set _operand A _and B vseq::get_type());

operand A is ([0-9]+) and operand B is ([0-9]+) bathtub_pkg:

the ALU performs the division operation bathtub_pkg:
The result should be ([0-9]+) bathtub_pkg:
The DIV _BY_ZERO flag should be (\S*) bathtub_pkg:

Bathtub converts “%d” to reqular
expression “([0-9]+)” and stores the step
definition object wrapper in the resource
database. The name is a constant.

:step_definition_interface
:step_definition_interface

:step_definition_interface

Name ______________|Value

:step_definition_interface

set_operand_A_and_B_vseq
do_division_operation_vseq
check_result vseq

check_DIV_BY_ZERO_flag vseq

DESIGN AND \Q;;N ™~

DVGCON

CONFERENCE AND EXHIBITION

Execute
Specification

Bathtub Runtime Operation

Step text from feature file.

Given operand A is 15 and operand B is 4

uvm_resource_db#(uvm_object wrapper)::get by name(
"operand A is 15 and operand B is 4", —
"bathtub pkg::step definition_interface", 1);

__

operand A is ([0-9]+) and operand B is ([©-9]+) bathtub_pkg::step_definition_interface set_operand_A_and_B_vseq

Bathtub looks for regular expression in
resource database that matches step text.

the ALU performs the division operation bathtub_pkg::step_definition_interface do_division_operation vseq

Finds matclh, instantiates sequence from object wrapper, and configures instance with feature file step text.

‘l' Runs sequence. Step parameter macros in body() task use Ssscanf()
uvm_do_on(sequence, sequencer); and format string to extract values 15 and 4 from step text.

DESIGN AND Q;N ™

DVCON

CONFERENCE AND EXHIBITION

Bathtub Results

* Ran on two SoC project blocks

 Success from discovery workshop to regression
 BDD is not verification, but dovetails

* Feature file & step definition advantages, challenges
 Communication, planning, reuse, debug benefits

* Power of SystemVerilog language

* Available open-source at https://github.com/williaml33moore/bathtub

https://github.com/williaml33moore/bathtub

Questions

Thank you!

