
Using a modern build system to speed up complex
hardware design

Varun Koyyalagunta, Tenstorrent

The hardware design cycle

1. Check out latest design and dependencies
2. Make a change
3. Build simulation models
4. Run smoke tests
5. Push that change to other users

The hardware design cycle - typical flow

1. git pull; git submodule update --recursive
2. $EDITOR file.sv
3. make test -j8
4. git push

The RTL design cycle - Pain points

1. git pull && git submodule update --recursive
• Dependencies can take a lot of space and time to download

2. $EDITOR file.sv
3. make test -j8

• Builds all simulation models and runs all tests even if your file.sv isn't used by all units

• Does not fully leverage available compute resources

• May have to do "make clean" often because of badly specified dependencies

4. git push

Solution - Bazel

• Fast
• Better dependency management - Download as needed

• Remote caching - Download results from other users' runs

• Remote execution - Dispatch builds and runs to a compute farm

•Correct
• Sandboxed execution - Difficult to have unspecified dependencies, removes

need for "make clean"

Bazel

• User describes a dependency graph
• Bazel quickly and correctly optimizes each node in the graph

gen_sv.py gen.sv sim.exe

run.log

test.c test.elf

Sandboxed execution

• Each node of the dependency graph only sees specified dependencies
• Eg, the step to create test.elf can see test.c but not gen_sv.py

gen_sv.py gen.sv sim.exe

run.log

test.c test.elf

Dependency management

• Assuming gen_sv.py is coming from another repo
• If only generating test.elf, that repo does not need to be downloaded

gen_sv.py
(external)

gen.sv sim.exe

run.log

test.c test.elf

Remote caching

• Anything someone else has done can be downloaded

gen_sv.py gen.sv sim.exe

run.log

test.c test.elf

Remote Execution

• Bazel uses an open protocol for remote execution
• There are many free open source implementations and paid

commercial implementations
• For legacy schedulers that don't support the protocol, one can write a

shim that translates Bazel's remote execution requests to their API

Bazel LSF-shim LSF

test.c

gen_sv.py

Average smoke
duration
•Reduced more than 3x
by leveraging compute
farm

•Caching can reduce even
further

Smoke duration
distribution for one
day's worth of runs
•71 total runs
•Average duration with no
cache hit is 18 minutes

•More than 13 hours of
CPU time saved per day
due to caching

Questions?

