Towards Efficient Design
Verification - PyUVM & PyVSC

Deepak Narayan Gadde, Suruchi Kumari, Aman Kumar

Infineon Technologies Dresden GmbH & Co. KG, Dresden, Germany

Why to use Python in Verification?

Language complexity with respect to number of specification pages & keywords

Python 3.7 I 600
o e 65
50
Er--———u
32
¢ b 540
104
o e 511
42
e P
6

— 303

Erlang ﬁ

221
— 1285
248
— 1315

0 200 400 600 800

Ruby

Smalltalk

SV IEEE 1800-2009

SV IEEE 1800-2012

1000 1200 1400

Wmkeywords M spec_pages

Comparison of Simulation run-time

 SystemVerilog-UVM testbenches ALV
perform better than PyUVM in ALU and A test is run separately for various transactions
80
ECC z 59.05
2
. . S 60
* With the help of automatic tests g 37.97
discovery in Cocotb, PyUVM excels 2 0 19.44
SystemVerilog-UVM in case of ADC %20 5
E
testbench o l_
10000 20000 30000
Number of transactions during simulation
ADC ECC
3 tests are run in a single simulation A test is run separately for various transactions
= 6 3 57.72
2 £ 60
S] 39.8
8 3 40
2 é 19.33
s 2 s 20
i 0.13 : 6.1
2 o 0
1 10000 20000 30000
Number of transactions during simulation Number of transactions during simulation

PyUVM SystemVerilog-UVM

Coverage Analysis

SV-uvm/

PYUVM SV-uvm Pyuvi SV-UvM PyuUVM SV-uvm PyUVM
ber of

Transactions

Coverage (%) 78.29 100 100 100 95 95

¢ PyUVM and SystemVerilog-UVM achieved comparable coverage in case of ADC,
ECC case studies

30000 30000

¢ In ALU case study, PyUVM could achieve coverage closure due to the random
seeds selected for that simulation

Objectives

Python-Cocotb - RTL simulator | Test

plugin and library for writing Environment

synchronous logic
| Reference Model

PyUVM - Python
implementation of UVM t

methodology | Scoreboard

PyVSC - Enables constrained I I

random verification methodology
and coverage constructs

Sequencer| Driver Input

Monitor,

Output
Monitor|

keq_item:

Effectiveness of PyUVM in

verification with respect to

SystemVerilog-UVM

« Simulation run-time | Bus Functional Model

* Features t

» Coverage analysis Design Under Test

Case Study on 3 design IPs
* ALU, ADC, and ECC

Comparison of Features

PyUVM: All classes are already registered in

factory
Field Macros Yes No PYUVM: __str_ (), _eq__()
RAL Model Yes A
development
Yes Yes PyUVM uses logging module
. 3 kn mREN”
Configurati Yes Yes PyUVM: ConfigDB().set(None, “*”, “BFM”,
atabase bfm)

Yes Yes PYUVM: from pyuvm import *
User-defined Possible Not possible In PyUVM: only common phases from UVM
phases specs are implemented

[uvm_test TR Not required -

No Yes PyUVM: await run test()

In PyUVM, any uvm_component can
Not required instantiate uvm_put_port or uvm_get_port
its build phase
Since Python does not have coverage
constructs, PyVSC library is used along with
PyuUVM

TLM Syst Required
Yes No

Conclusion

¢ Developed verification testbenches in SystemVerilog-UVM and PyUVM for three
design IPs > ALU, ADC, and ECC

* PyUVM is used in conjunction with PyVSC to make comparable testbenches as
SystemVerilog-UVM

¢ Simulation run-time with PyUVM testbench may improve if clock generation is
moved from testbench to DUT side

¢ PyUVM simulation easy collection of input and coverage data in a preferred
format

¢ PyUVM can introduce new methodologies based on Machine Learning to overall
improve design verification

References

¢ R. Salemi and T. Fitzpatrick, “Verification Learns a New Language: — An IEEE
1800.2 Implementation” 2021

* M. Ballance, PyVSC : SystemVerilog - Style Constraints, and Coverage in Python,
2019

Testbench Architecture using Bus Functional Model

in

