

Towards Efficient Design Verification - PyUVM & PyVSC

Deepak Narayan Gadde, Suruchi Kumari, Aman Kumar

Infineon Technologies Dresden GmbH & Co. KG, Dresden, Germany

DESIGN AND VE CONFERENCE AND EXHIBITION UNITED STATES SAN JOSE, CA, USA MARCH 4-7, 2024

Input

Monit

Output

Monito

Comparison of Simulation run-time

- SystemVerilog-UVM testbenches perform better than PyUVM in ALU and ECC
- With the help of automatic tests discovery in Cocotb, PyUVM excels SystemVerilog-UVM in case of ADC testbench

ADC

3 tests are run in a single simulation

0.13

1 Number of transactions during sim

PyUVM

run-time (seconds)

4

2

6.3

Python-Cocotb → RTL simulator

plugin and library for writing

implementation of UVM

and coverage constructs

Effectiveness of PyUVM in

Simulation run-time

Coverage analysis

• ALU, ADC, and ECC

Case Study on 3 design IPs

verification with respect to SystemVerilog-UVM

PyVSC → Enables constrained

random verification methodology

synchronous logic

PyUVM → Python

methodology

Features

Comparison of Features SystemVerilog-

Objectives

Test

Environment

Scoreboard

Sequence

seq_item

Reference Model

Bus Functional Model

Design Under Test

Seauence

Testbench Architecture using Bus Functional Model

Feature	UVM	ΡγυνΜ	Remarks
Utility Macros	Yes	No	PyUVM: All classes are already registered in factory
Field Macros	Yes	No	PyUVM:str(),eq()
RAL Model	Yes	In development	-
Logging	Yes	Yes	PyUVM uses logging module
Configuration Database	Yes	Yes	PyUVM: ConfigDB().set(None, "*", "BFM", bfm)
Importation	Yes	Yes	PyUVM: from pyuvm import *
User-defined phases	Possible	Not possible	In PyUVM, only common phases from UVM specs are implemented
uvm_test	Required	Not required	-
Awaiting tasks	No	Yes	PyUVM: await run test()
TLM System	Required	Not required	In PyUVM, any uvm_component can instantiate uvm_put_port or uvm_get_port in its build phase
Covergroups	Yes	No	Since Python does not have coverage constructs, PyVSC library is used along with PyUVM

Coverage Analysis

Design IP	ALU		ADC		ECC	
SV-UVM/ PyUVM	SV-UVM	PyUVM	SV-UVM	PyUVM	SV-UVM	ΡγυνΜ
Number of distinct tests	1	1	3	3	1	1
Number of Transactions	30000	30000	-	-	30000	30000
Coverage (%)	78.29	100	100	100	95	95

• PyUVM and SystemVerilog-UVM achieved comparable coverage in case of ADC, ECC case studies

• In ALU case study, PyUVM could achieve coverage closure due to the random seeds selected for that simulation

Conclusion

- Developed verification testbenches in SystemVerilog-UVM and PyUVM for three design IPs \rightarrow ALU, ADC, and ECC
- PyUVM is used in conjunction with PyVSC to make comparable testbenches as SystemVerilog-UVM
- Simulation run-time with PyUVM testbench may improve if clock generation is moved from testbench to DUT side
- PyUVM simulation easy collection of input and coverage data in a preferred format
- PyUVM can introduce new methodologies based on Machine Learning to overall improve design verification

References

- R. Salemi and T. Fitzpatrick, "Verification Learns a New Language: An IEEE 1800.2 Implementation" 2021
- M. Ballance, PyVSC : SystemVerilog Style Constraints, and Coverage in Python, 2019

