
• PyUVM and SystemVerilog-UVM achieved comparable coverage in case of ADC, 
ECC case studies

• In ALU case study, PyUVM could achieve coverage closure due to the random 
seeds selected for that simulation

• Python-Cocotb RTL simulator 
plugin and library for writing 
synchronous logic

• PyUVM Python 
implementation of UVM
methodology

• PyVSC Enables constrained 
random verification methodology 
and coverage constructs

• Effectiveness of PyUVM in 
verification with respect to 
SystemVerilog-UVM

• Simulation run-time

• Features

• Coverage analysis

• Case Study on 3 design IPs

• ALU, ADC, and ECC

• SystemVerilog-UVM testbenches 
perform better than PyUVM in ALU and 
ECC 

• With the help of automatic tests 
discovery in Cocotb, PyUVM excels 
SystemVerilog-UVM in case of ADC 
testbench
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PyUVM: All classes are already registered in 
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NoYesUtility Macros

PyUVM: __str__(), __eq__()NoYesField Macros 
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In 

development
YesRAL Model

PyUVM uses logging moduleYesYesLogging

PyUVM: ConfigDB().set(None, ”*”, ”BFM”,  
bfm)

YesYes
Configuration 
Database

PyUVM: from pyuvm import *YesYesImportation

In PyUVM, only common phases from UVM 
specs are implemented

Not possiblePossible
User-defined 
phases

-Not requiredRequireduvm_test

PyUVM: await run test()YesNoAwaiting tasks

In PyUVM, any uvm_component can 
instantiate uvm_put_port or uvm_get_port in 
its build phase

Not requiredRequiredTLM System

Since Python does not have coverage 
constructs, PyVSC library is used along with 
PyUVM

NoYesCovergroups
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• Developed verification testbenches in SystemVerilog-UVM and PyUVM for three 
design IPs  ALU, ADC, and ECC

• PyUVM is used in conjunction with PyVSC to make comparable testbenches as 
SystemVerilog-UVM

• Simulation run-time with PyUVM testbench may improve if clock generation is 
moved from testbench to DUT side

• PyUVM simulation easy collection of input and coverage data in a preferred 
format

• PyUVM can introduce new methodologies based on Machine Learning to overall 
improve design verification 
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Testbench Architecture using Bus Functional Model

• R. Salemi and T. Fitzpatrick, “Verification Learns a New Language: – An IEEE 
1800.2 Implementation” 2021

• M. Ballance, PyVSC : SystemVerilog - Style Constraints, and Coverage in Python, 
2019
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