Towards Efficient Design
Verification - PyUVM & PyVSC

Deepak Narayan Gadde, Suruchi Kumari, Aman Kumar

Infineon Technologies Dresden GmbH & Co. KG, Dresden, Germany

Why to use Python in Verification?

Language complexity with respect to number of specification pages & keywords
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Comparison of Simulation run-time
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Coverage Analysis
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Coverage (%) 78.29 100 100 100 95 95

¢ PyUVM and SystemVerilog-UVM achieved comparable coverage in case of ADC,
ECC case studies

30000 30000

¢ In ALU case study, PyUVM could achieve coverage closure due to the random
seeds selected for that simulation
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Effectiveness of PyUVM in

verification with respect to

SystemVerilog-UVM

« Simulation run-time | Bus Functional Model

* Features t

» Coverage analysis Design Under Test

Case Study on 3 design IPs
* ALU, ADC, and ECC

Comparison of Features

PyUVM: All classes are already registered in

factory
Field Macros Yes No PYUVM: __str_ (), _eq__()
RAL Model Yes A
development
Yes Yes PyUVM uses logging module
. 3 kn mREN”
Configurati Yes Yes PyUVM: ConfigDB().set(None, “*”, “BFM”,
atabase bfm)

Yes Yes PYUVM: from pyuvm import *
User-defined Possible Not possible In PyUVM: only common phases from UVM
phases specs are implemented

[ uvm_test TR Not required -

No Yes PyUVM: await run test()

In PyUVM, any uvm_component can
Not required instantiate uvm_put_port or uvm_get_port
its build phase
Since Python does not have coverage
constructs, PyVSC library is used along with
PyuUVM

TLM Syst Required
Yes No

Conclusion

¢ Developed verification testbenches in SystemVerilog-UVM and PyUVM for three
design IPs > ALU, ADC, and ECC

* PyUVM is used in conjunction with PyVSC to make comparable testbenches as
SystemVerilog-UVM

¢ Simulation run-time with PyUVM testbench may improve if clock generation is
moved from testbench to DUT side

¢ PyUVM simulation easy collection of input and coverage data in a preferred
format

¢ PyUVM can introduce new methodologies based on Machine Learning to overall
improve design verification
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