
• PyUVM and SystemVerilog-UVM achieved comparable coverage in case of ADC,
ECC case studies

• In ALU case study, PyUVM could achieve coverage closure due to the random
seeds selected for that simulation

• Python-Cocotb RTL simulator
plugin and library for writing
synchronous logic

• PyUVM Python
implementation of UVM
methodology

• PyVSC Enables constrained
random verification methodology
and coverage constructs

• Effectiveness of PyUVM in
verification with respect to
SystemVerilog-UVM

• Simulation run-time

• Features

• Coverage analysis

• Case Study on 3 design IPs

• ALU, ADC, and ECC

• SystemVerilog-UVM testbenches
perform better than PyUVM in ALU and
ECC

• With the help of automatic tests
discovery in Cocotb, PyUVM excels
SystemVerilog-UVM in case of ADC
testbench

RemarksPyUVM
SystemVerilog-

UVM
Feature

PyUVM: All classes are already registered in
factory

NoYesUtility Macros

PyUVM: __str__(), __eq__()NoYesField Macros

-
In

development
YesRAL Model

PyUVM uses logging moduleYesYesLogging

PyUVM: ConfigDB().set(None, ”*”, ”BFM”,
bfm)

YesYes
Configuration
Database

PyUVM: from pyuvm import *YesYesImportation

In PyUVM, only common phases from UVM
specs are implemented

Not possiblePossible
User-defined
phases

-Not requiredRequireduvm_test

PyUVM: await run test()YesNoAwaiting tasks

In PyUVM, any uvm_component can
instantiate uvm_put_port or uvm_get_port in
its build phase

Not requiredRequiredTLM System

Since Python does not have coverage
constructs, PyVSC library is used along with
PyUVM

NoYesCovergroups

ECCADCALUDesign IP

PyUVMSV-UVMPyUVMSV-UVMPyUVMSV-UVM
SV-UVM/
PyUVM

113311
Number of
distinct tests

3000030000--3000030000
Number of
Transactions

959510010010078.29Coverage (%)

• Developed verification testbenches in SystemVerilog-UVM and PyUVM for three
design IPs ALU, ADC, and ECC

• PyUVM is used in conjunction with PyVSC to make comparable testbenches as
SystemVerilog-UVM

• Simulation run-time with PyUVM testbench may improve if clock generation is
moved from testbench to DUT side

• PyUVM simulation easy collection of input and coverage data in a preferred
format

• PyUVM can introduce new methodologies based on Machine Learning to overall
improve design verification

Deepak Narayan Gadde, Suruchi Kumari, Aman Kumar

Infineon Technologies Dresden GmbH & Co. KG, Dresden, Germany

Towards Efficient Design
Verification - PyUVM & PyVSC

Comparison of Simulation run-time

Why to use Python in Verification?

Comparison of Features

Coverage Analysis Conclusion

Objectives

Test

Environment

Reference Model

Scoreboard

Sequence
Driver Input

Monitor

Output

Monitor

Sequencer

seq_item

Bus Functional Model

Design Under Test

19.44

37.97

59.05

5 5.6 6.2

0

20

40

60

80

10000 20000 30000

ru
n

-t
im

e
 (

se
co

n
d

s)

Number of transactions during simulation

ALU
A test is run separately for various transactions

19.33

39.8

57.72

5.6 6.1 6.5

0

20

40

60

80

10000 20000 30000

ru
n

-t
im

e
 (

se
co

n
d

s)

Number of transactions during simulation

ECC
A test is run separately for various transactions

0.13

6.3

0

2

4

6

1

ru
n

-t
im

e
 (

se
co

n
d

s)

Number of transactions during simulation

ADC
3 tests are run in a single simulation

SystemVerilog-UVMPyUVM

Testbench Architecture using Bus Functional Model

• R. Salemi and T. Fitzpatrick, “Verification Learns a New Language: – An IEEE
1800.2 Implementation” 2021

• M. Ballance, PyVSC : SystemVerilog - Style Constraints, and Coverage in Python,
2019

References

1315

1285

31

303

311

511

540

644

865

600

248

221

28

6

42

104

32

50

83

35

0 200 400 600 800 1000 1200 1400

SV IEEE 1800-2012

SV IEEE 1800-2009

Erlang

Smalltalk

Ruby

C#

C

Java

C++

Python v3.7

Language complexity with respect to number of specification pages & keywords

keywords spec_pages

