
Towards Efficient Design Verification – Constrained
Random Verification using PyUVM

Deepak Narayan Gadde
Infineon Technologies

Dresden, Germany
Deepak.Gadde@infineon.com

Suruchi Kumari
Infineon Technologies

Dresden, Germany
Suruchi.Kumari@infineon.com

Aman Kumar
Infineon Technologies

Dresden, Germany
Aman.Kumar@infineon.com

Abstract

Abstract —Python, as a multi-paradigm language known for its ease of integration with other languages, has gained
significant attention among verification engineers recently. A Python-based verification environment capitalizes on open-
source frameworks such as PyUVM providing Python-based UVM 1.2 implementation and PyVSC facilitating constrained
randomization and functional coverage. These libraries play a pivotal role in expediting test development and hold promise
for reducing setup costs. The goal of this paper is to evaluate the effectiveness of PyUVM verification testbenches across
various design IPs, aiming for a comprehensive comparison of their features and performance metrics with the established
SystemVerilog-UVM methodology.

I. INTRODUCTION

With the continuous increase in complexity of System-on-Chip (SoC) designs, verification is becoming ever more challenging.
As a result, the time required for verification experiences a significant upsurge. Additionally, there is a subsequent need to be
more productive and efficient with limited manpower. Industry-utilized methodologies like Constrained Random Verification
(CRV), Formal Verification (FV), and Metric Driven Verification (MDV) use SystemVerilog as a language construct. It provides
numerous features like object-oriented programming and functional coverage, but learning the language has a steep curve
especially for the freshers requiring good understanding of designs.

Fig. 1 shows SystemVerilog is the most complicated language in comparison with other programming languages, as it has
1315 specification pages and 248 keywords as per IEEE 1800-2012, with variations in the level of tool support across different
Electronic Design Automation (EDA) vendors [1]. In summary, Universal Verification Methodology (UVM), which utilizes
SystemVerilog, gets more complex in addition to its standard. On the other hand, Python is simple, less verbose, and easily
integrable to Numpy, Pandas, and other open-source libraries. A recent study conducted by the Wilson research group [2] has
shown that 23% of all Application-Specific Integrated Circuit (ASIC) projects used Python for various project specific tasks.

200 400 600 800 1,000 1,200 1,400

Python v3.7

C++

Java

C

C#

Ruby

Smalltalk

Erlang

SV IEEE 1800-2009

SV IEEE 1800-2012

600

865

644

540

511

311

303

31

1,285

1,315

35

83

50

32

104

42

6

28

221

248

spec pages
keywords

Fig. 1: Language complexity with respect to number of specification pages and keywords [1]

Like SystemVerilog-UVM, PyUVM implements UVM 1.2 IEEE specification in Python using its high level language features,
and is built upon Cocotb to interface with the simulators. The main objective of this work is to assess the effectiveness of

Python testbench development using PyUVM and PyVSC libraries for the design Intellectual Properties (IPs), and to compare
it with the existing state-of-the-art methodologies, such as UVM and CRV. The following are key highlights of the paper:

• Comparison of Systemverilog-UVM with PyUVM for testbench development of various design IPs
• Feasibility of PyVSC library for enhanced coverage declaration and CRV
• Comparison of performance metrics in terms of simulation run-time
• Empirical observations made during the development of Python testbenches
The structure of the paper is as follows: Section II summarizes various prior works related to python based testbenches.

Section III details the design IPs used for the testbench development in both Systemverilog-UVM and PyUVM. Section IV
explains the implementation of our approach in creating PyUVM testbenches with an example. Section V discusses the results
and empirical observations made during our research. At the end, Section VI concludes our current work with future scope.

II. RELATED WORK

Prior work [3] has created the PyUVM framework for a RISC-V Single Cycle Core and has encouraged the features supported
by the methodology. The author in [4] discusses how the verification environment created in Python helps to reuse the test
sequences across testbenches. In [5], the author proposed a flow using the Verifog tool to catch bugs at the earliest stages
of the design phase without developing testbenches. uvm-python is a port of SystemVerilog-UVM 1.2 to Python and Cocotb
tested with Icarus Verilog and Verilator [6]. Additionally, research [7] has compared Python with SystemVerilog to show its
significance in design verification. The authors provide a detailed comparison between both Hardware Verification Languages
(HVLs) in terms of design hierarchy, coverage constructs, and their performance during simulation. The feature comparison
from the paper is given below in Table I.

TABLE I: Comparison between SystemVerilog and Python [7]

Feature SystemVerilog Python Remarks

Declaration of
data types Static Dynamic

Python allows undeclared variables and perform
any operation on them. Additionally, it has advanced data structures
e.g., tuple and dictionary, unlike SystemVerilog.

Supported types
of logic 0, 1, X, Z X, Z, U, W Python-Coroutine based cosimulation testbench (Cocotb) needs BinaryValue object for these logics

Parameterization and
size of the variable Required Not required If size is not declared in SystemVerilog, data may be

lost after an assignment to a different size than specified
Styles of control flow begin, end Proper indentation elif in Python replaces case in SystemVerilog/Verilog

Functions Not objects Callable objects Function in SystemVerilog are not objects and cannot be
stored or passed directly as arguments

Exceptions Not supported Supported In Python, exceptions are caught with try/except/finally blocks
Libraries - Large Create reference model for any complex design easily

Interpreted No Yes It allows to restart the simulator without recompiling and
edit tests while it is running

Design Hierarchy Includes top
testbench

Does not include
top testbench

It limits debugging capabilities, since tracing back signals
in the testbench is not possible

The related works elaborated on above mostly discuss PyUVM implementation but none of them examines how it is different
from commonly used methodology i.e., SystemVerilog-UVM in functional verification. In this work, we try to address this by
comparing various features of PyUVM with SystemVerilog-UVM, and their performances are analyzed in terms of simulation
run-time.

III. DESIGNS

We have carefully chosen three distinct designs in our research for verification implementation considering several important
aspects i.e., Arithmetic Logic Unit (ALU), Analog-to-Digital Converter (ADC), and Error Correction Code (ECC). These may
aid in our decision about compatibility of PyUVM testbenches in comparison with SystemVerilog-UVM methodology. A short
explanation for the design IPs is given below.

A. ALU

The 32-bit ALU is a hardware unit that is designed using Verilog and can perform various computations on 32-bit input
data. These include two arithmetic operations: addition and subtraction; and six logical operations, including NOT, AND, OR,
XOR, NAND, and NOR. This IP has 4 inputs, two of which are data buses a and b, plus a control bus op, and a clock signal.
The output of the design module would be a data bus r. Fig. 2 displays the block diagram of the 32-bit ALU. Due to its
computational capabilities, it is commonly used in modern processors.

r

clk

op

a

b

Fig. 2: ALU

B. ADC

The ADC module is primarily meant to convert analog input values to the corresponding digital data with 16 bit resolution.
To improve the resolution and reduce the noise of the conversion, an oversampling feature is also added to the ADC. Control
and Status Registers are available to configure the oversampling factor of 1, 2, 4, or 8, with 1 indicating no oversampling. The
conversion of analog in can be triggered via another register bit and the result sent out on the digital out bus as shown in
Fig. 3.

addr_in

clk_in

rst_n_in

data_in

en_in

rw_in

analog_in

digital_out

data_out

start_out

busy_out

eoc_out

err_out

Fig. 3: ADC

TABLE II: Description of Register Model used in ADC design IP

Register Address Width Access Reset Value Details
Dummy ’h0 8 RO ’h0 Dummy register - not used

Config ’h1 8 [7:2] RO ’h0 Reserved - not used
[1:0] RW Oversampling factor (1,2,4,8)

Trigger ’h2 8 [7:1] RO ’h0 Reserved - not used
[0] RW Start ADC conversion

The registers can be accessed via a simple register interface with address, data and read/write signals. The registers are 8
bits in width. To write to a register, rw in must be set, addr in should be driven by the target register address and data in
should hold the value of data that needs to be written to the register. To read from a register, rw in must be de-asserted and
the addr in bus should be provided with the target register address. The data out bus from the register interface will hold the
value read from the target register. The register description is mentioned in Table II. Register address 0 is a dummy register
and kept for future use. Register address 1 is the configuration register where bit 0 is used to trigger an ADC conversion, bits
1 to 2 are used to set the oversampling factor, and bits 3 to 7 are reserved bits.

C. ECC

ECCs are extensively used with the aim of protecting against soft-errors in automotive products that are crucial to safety.
These errors arise either in the logic or in data due to radiation, electrical glitches, or electromagnetic interference, which can
occur either during the production process or while the device is being used.

dataout

chkout

alarm

err_detect

err_multpl

gen

correct_n

chkin

data in

Fig. 4: ECC Core

The ECC design implements a Single-Error Correction, Double-Error Detection (SECDED) over a parameterized range of
word widths. It involves incorporating additional bits, called check bits, into each storage word (such as in RAM). During the
writing process, these encoded check bits are written alongside the data bits. Upon reading a word, the check bits are utilized
to determine if there are any errors and, if there is a single-bit error, which specific bit contains the error. This particular ECC
module is capable of detecting all one or two-bit errors (including check bits) and correcting all single-bit errors (including
check bits). However, this ECC does not guarantee error detection if more than two bits in a word are faulty (including check
bits). In such cases, the error syndrome may match the error syndrome of a single-bit error, causing the ECC to miscorrect a
single-bit error that does not exist.

The block diagram of the ECC core module is shown in Fig. 4. The same module can be configured as an encoder or a
decoder based on the input signal gen. When the gen signal is set to 1, it configures the design as an encoder otherwise as a
decoder. The bus datain is the data word to check during the check mode, or data from which check bits are generated during
generate mode. The primary output of the module is dataout which can be corrected if an error is detected and correct n is
asserted. Other outputs include error check flags i.e., err detect and err multpl if the ECC core module is used as decoder.

IV. VERIFICATION IMPLEMENTATION

With a clear understanding of the design Intellectual Propertys (IPs), we proceed with the verification implementation phase.
In PyUVM as shown in Fig. 5, the testbench software is the PyUVM testbench, the proxy is implemented in Cocotb, where
Cocotb connects Python to simulators through Verilog Procedural Interface (VPI) and VHDL Procedural Interface (VHPI).
Hence both Python and the Design Under Test (DUT) which runs in the simulator share the same proxy interface, the transactions
from the testbench are called using the Python coroutines (driver and monitors Bus Functional Models (BFMs)) which also
ensures DUT is not busy.

PyUVM Testbench

Proxy implemented in Cocotb

Driver BFM DUT Monitors BFM

Fig. 5: Proxy-driven PyUVM testbench [8]

Figure 6 illustrates the PyUVM testbench architecture used in our work, which depicts the connections and communication
between UVM components. The following subsections present a concise explanation of the PyUVM testbench implementation
for the ECC design IP.

Test

Environment

Design Under Test

Bus Functional Model

Scoreboard

Reference Model

Input
Monitor

Output
Monitor

Sequence DriverSequencer

seq_item

Fig. 6: Testbench Architecture of PyUVM using BFM class

A. ECC BFM

To enable access to the DUT and to abstract the Universal Verification Methodology (UVM) testbench code, a BFM class
has been created. This BFM has been implemented using coroutines in Cocotb. Within the init () function of the BFMs
class, a handle to the top module of the design is included. Additionally, a clock with a parameterized time period is generated
as further explained in Listing 1, line 2-3. To facilitate the transfer of transactions between the testbench and the DUT, three
queues have been declared, as specified in Listing 1, line 4-6.

Listing 1: init () function of ECC BFM class
1 def i n i t (s e l f) :
2 s e l f . d u t = c o c o t b . t o p
3 c o c o t b . s t a r t s o o n (Clock (s e l f . d u t . c lk , CLKPERIOD , u n i t s =” ns ”) . s t a r t ())
4 s e l f . d r i v e r q u e u e = Queue (maxs ize =1)
5 s e l f . inp mon queue = Queue (maxs ize =0) # I n f i n i t e l y l ong
6 s e l f . out mon queue = Queue (maxs ize =0) # I n f i n i t e l y l ong

As discussed before, the details of important coroutines inside the BFM-based class are as below.
1) initialization(): The purpose of this function is to initialize the signals of the DUT.
2) driver bfm(): The implementation of the driver BFM which is included in the BFM class, is demonstrated in Listing

2. By utilizing the RisingEdge and FallingEdge triggers, this coroutine can function as an RTL BFM. The BFM is looped
upon a clock positive edge. Within the try block, a timed get() operation is executed on a Queue if a transaction can be found
within it, whereas the loop will continue to the next iteration and wait for the next positive clock if there are no transactions
in the Queue. As shown in line 6, this transaction is assigned to the Encoder input signal datain. In line 7 of Listing 2, the
gen random index(data in gen) method is called which inserts bit flip(s) randomly in either data or check bits after encoding.

Listing 2: Driver coroutine in ECC BFM class
1 async def d r i v e r b f m (s e l f) :
2 whi le True :
3 a w a i t R i s ingEdge (s e l f . d u t . c l k)
4 t r y :
5 s e l f . d a t a i n g e n = s e l f . d r i v e r q u e u e . g e t n o w a i t ()
6 s e l f . d u t . e n c d a t a i n . v a l u e = s e l f . d a t a i n g e n
7 s e l f . gen random index (s e l f . d a t a i n g e n)
8 e xc ep t QueueEmpty :
9 c o n t in u e

3) inp mon bfm(), out mon bfm(): Two monitors are created utilizing coroutines from Cocotb in order to populate two
infinite, long queues with input and output signals originating from the DUT. The implementation details of these monitors can
be found in Listing 3 and Listing 4, respectively. These monitors are looped at the negative edge of the clock. The presence
of queues permits the UVM threads to make blocking calls into these asynchronous coroutines.

Listing 3: Input Monitor coroutine in ECC BFM class
1 async def inp mon bfm (s e l f) :
2 whi le True :
3 a w a i t F a l l i n g E d g e (s e l f . d u t . c l k)
4 i n p t u p l e = (g e t i n t (s e l f . d u t . e n c d a t a i n) , g e t i n t (s e l f . d u t . e n c c h k i n))
5 s e l f . inp mon queue . p u t n o w a i t (i n p t u p l e)

Listing 4: Output Monitor coroutine in ECC BFM class
1 async def out mon bfm (s e l f) :
2 whi le True :
3 a w a i t F a l l i n g E d g e (s e l f . d u t . c l k)
4 o u t t u p l e = (g e t i n t (s e l f . d u t . d e c e r r d e t e c t) , g e t i n t (s e l f . d u t . d e c e r r m u l t p l) ,

g e t i n t (s e l f . d u t . d e c d a t a o u t) , g e t i n t (s e l f . d u t . d e c c h k o u t))
5 s e l f . out mon queue . p u t n o w a i t (o u t t u p l e)

4) start bfm(): This method, which is also a part of the BFM class, is depicted in Listing 5 initiates the simultaneous
execution of all coroutines during the run phase. It is launched in the build phase of the test, which is defined at the top of
the testbench, as shown in Listing 6, line 6.

Listing 5: Method to start all coroutines
1 def s t a r t b f m (s e l f) :
2 c o c o t b . s t a r t s o o n (s e l f . d r i v e r b f m ())
3 c o c o t b . s t a r t s o o n (s e l f . inp mon bfm ())
4 c o c o t b . s t a r t s o o n (s e l f . out mon bfm ())

B. Test

Figure 6 depicts that the test comprises all the necessary UVM components essential for the testbench development.
It is designated with the decorator1, i.e., @pyuvm.test(), to recognize itself as a test during the compilation process. The
implementation of the test is shown in Listing 6, which extends the uvm test.

During the build phase, the ECC BFM class object and EccEnv are created, and the PyUVM version of ConfigDB, which
is also a part of the uvm component, is set.

The run phase in all UVM components is asynchronous and is declared as a coroutine2 function using async def. As it requires
time, self.raise objection() and self.drop objection() are used to inform Cocotb of the simulation status (Started/Finished).
Between these methods, a sequence is created and transferred to the sequencer to initiate, as shown in lines 12-14, Listing 6.

Listing 6: Test top of PyUVM testbench
1 @pyuvm . t e s t ()
2 c l a s s BaseTes tEcc (u v m t e s t) :
3 def b u i l d p h a s e (s e l f) :
4 bfm = EccBfm ()
5 ConfigDB () . s e t (None , ” * ” , ”BFM” , bfm)
6 bfm . s t a r t b f m ()
7 s e l f . env = EccEnv . c r e a t e (” env ” , s e l f)
8 async def r u n p h a s e (s e l f) :
9 s e l f . r a i s e o b j e c t i o n ()

10 s e q r = ConfigDB () . g e t (s e l f , ” ” , ”SEQR”)
11 bfm = ConfigDB () . g e t (s e l f , ” ” , ”BFM”)
12 seq = EccSeq (” seq ”)
13 a w a i t seq . s t a r t (s e q r)
14 a w a i t C lockCyc le s (bfm . d u t . c lk , 3)
15 s e l f . d r o p o b j e c t i o n ()

C. Environment

The EccEnv class is an extension of the uvm env class, which encapsulates the necessary components required for the
testbench, as outlined in Listing 7. Within the build phase (Lines 3-8), an instance of the uvm sequencer is created to queue

1Decorators use @ followed by the decorator name before a function or class declaration. When invoking the decorated function or class, the decorator
runs first, and its output substitutes the original.

2A coroutine function is a Python function declared with async def.

and pass sequence items to the driver, and the Driver, Monitors, and Scoreboard are instantiated. In the Monitors, the name of
the proxy functions that get the data they monitor is passed.

During the connect phase, the exports are connected to the ports, as exemplified in lines 10-12, Listing 7. The build phase
is a top-down phase, while the connect phase is a bottom-up phase.

Listing 7: Environment of PyUVM testbench
1 c l a s s EccEnv (uvm env) :
2 def b u i l d p h a s e (s e l f) :
3 s e l f . s e q r = uvm sequencer (” s e q r ” , s e l f)
4 ConfigDB () . s e t (None , ” * ” , ”SEQR” , s e l f . s e q r)
5 s e l f . d r i v e r = D r i v e r (” d r i v e r ” , s e l f)
6 s e l f . inp mon = I n p u t M o n i t o r (” inp mon ” , s e l f , ” g e t i n p ”)
7 s e l f . out mon = Outpu tMon i to r (” out mon ” , s e l f , ” g e t o u t ”)
8 s e l f . s c o r e b o a r d = S c o r e b o a r d (” s c o r e b o a r d ” , s e l f)
9 def c o n n e c t p h a s e (s e l f) :

10 s e l f . d r i v e r . s e q i t e m p o r t . c o n n e c t (s e l f . s e q r . s e q i t e m e x p o r t)
11 s e l f . inp mon . ap . c o n n e c t (s e l f . s c o r e b o a r d . i n p e x p o r t)
12 s e l f . out mon . ap . c o n n e c t (s e l f . s c o r e b o a r d . o u t e x p o r t)

D. Monitor

Figure 6 demonstrates that the PyUVM testbench implementation may include two monitors, namely the Input Monitor and
Output Monitor, which can monitor input and output transactions from the DUT separately. Listing 8 illustrates the code for
the OutputMonitor class, which is an extension of the uvm component. It accepts the name of the Cocotb proxy method as
an argument, as presented in Line 2.

During the build phase, it utilizes this argument to locate the method in the proxy and subsequently invokes the method
utilizing getattr(), as demonstrated in line 8. This functionality is infeasible in SystemVerilog-UVM. Additionally, an analysis
port is created. Within the run phase, an instance of a covergroup is generated, which is sampled with the datum at each clock
edge. Moreover, data is written into the analysis port, which is obtained at each clock edge, as displayed in line 14.

Listing 8: Monitor of PyUVM testbench
1 c l a s s Outpu tMon i to r (uvm component) :
2 def i n i t (s e l f , name , p a r e n t , method name) :
3 super () . i n i t (name , p a r e n t)
4 s e l f . method name = method name
5 def b u i l d p h a s e (s e l f) :
6 s e l f . ap = u v m a n a l y s i s p o r t (” ap ” , s e l f)
7 s e l f . bfm = ConfigDB () . g e t (s e l f , ” ” , ”BFM”)
8 s e l f . ge t method = g e t a t t r (s e l f . bfm , s e l f . method name)
9 async def r u n p h a s e (s e l f) :

10 d u t cg = d u t c o v e r g r o u p ()
11 whi le True :
12 datum = a w a i t s e l f . ge t method ()
13 d u t cg . sample (datum)
14 s e l f . ap . w r i t e (datum)

E. Scoreboard

The Scoreboard class, detailed in Listing 9, also extends the uvm component class, similar to monitors. In essence, this
class receives inputs and outputs from the DUT; and analyzes and verifies the proper functioning of the DUT.

During the build phase (Lines 3-8), instances of the uvm tlm analysis fifo are created to obtain data from monitors and
store them. In the connect phase, the exports are connected, as demonstrated in lines 10 and 11. After the simulation run, the
check phase is executed. Using the try get() method, which returns a tuple consisting of data retrieval success (True/False)
and the data, data is retrieved from both input and output FIFOs that are iterated conditionally using can get(). Within the
checker function as demonstrated in lines 18-22, a comparison is made to determine whether the encoder data input matches
the decoder data output. Otherwise, there might be multiple bit flips (as the ECC is SECDED).

At the conclusion of the simulation, the coverage report is generated utilizing the write coverage db method from PyVSC,
as shown in line 23, Listing 9.

Listing 9: Scoreboard of PyUVM Testbench
1 c l a s s S c o r e b o a r d (uvm component) :
2 def b u i l d p h a s e (s e l f) :
3 s e l f . i n p f i f o = u v m t l m a n a l y s i s f i f o (” i n p f i f o ” , s e l f)
4 s e l f . o u t f i f o = u v m t l m a n a l y s i s f i f o (” o u t f i f o ” , s e l f)
5 s e l f . i n p g e t p o r t = uvm ge t po r t (” i n p g e t p o r t ” , s e l f)
6 s e l f . o u t g e t p o r t = uvm ge t po r t (” o u t g e t p o r t ” , s e l f)
7 s e l f . i n p e x p o r t = s e l f . i n p f i f o . a n a l y s i s e x p o r t
8 s e l f . o u t e x p o r t = s e l f . o u t f i f o . a n a l y s i s e x p o r t
9 def c o n n e c t p h a s e (s e l f) :

10 s e l f . i n p g e t p o r t . c o n n e c t (s e l f . i n p f i f o . g e t e x p o r t)
11 s e l f . o u t g e t p o r t . c o n n e c t (s e l f . o u t f i f o . g e t e x p o r t)
12 def check phase (s e l f) :
13 whi le s e l f . o u t g e t p o r t . c a n g e t () :
14 , d u t o u t = s e l f . o u t g e t p o r t . t r y g e t ()
15 i n p s u c c e s s , i n p = s e l f . i n p g e t p o r t . t r y g e t ()
16 (e n c d a t a i n , e n c c h k i n) = i n p
17 (d e c e r r d e t , d e c e r r m u l t p l , d e c d a t a o u t , dec chkout , d e c a l a r m o u t) = d u t o u t
18 i f i n p s u c c e s s == True :
19 i f d e c d a t a o u t == e n c d a t a i n :
20 s e l f . l o g g e r . i n f o (f ” T e s t : Yay ! ! ! Pa s se d ! ”)
21 e l s e :
22 s e l f . l o g g e r . debug (f ” T e s t : F a i l e d ! Decoded d a t a mismatched ! ! M u l t i p l e b i t

f l i p s e x i s t ! ! ! Expec ted : { e n c d a t a i n } , A c t u a l : { d e c d a t a o u t }”)
23 vsc . w r i t e c o v e r a g e d b (’ cov . xml ’)

F. Driver

Listing 10 illustrates the implementation of the PyUVM driver component. The Driver class extends the uvm driver and
works with sequence items. The ECC BFM method is accessed using ConfigDB. Therefore, the get() method is implemented
in the connect phase, as shown in line 3.

In the run phase (Lines 5-9, Listing 10), the initialization function from the ECC BFM class is invoked, and then the
get next item() method, which is defined inside an infinite loop, is utilized to retrieve the sequence items and transmit them
to the driver bfm function in the BFM class by calling send inp.

Listing 10: Driver of PyUVM testbench
1 c l a s s D r i v e r (uvm dr ive r) :
2 def c o n n e c t p h a s e (s e l f) :
3 s e l f . bfm = ConfigDB () . g e t (s e l f , ” ” , ”BFM”)
4 async def r u n p h a s e (s e l f) :
5 s e l f . bfm . i n i t i a l i z a t i o n ()
6 whi le True :
7 input = a w a i t s e l f . s e q i t e m p o r t . g e t n e x t i t e m ()
8 a w a i t s e l f . bfm . s e n d i n p (input . d a t a i n)
9 s e l f . s e q i t e m p o r t . i t em done ()

G. Sequence

The EccSeq class, detailed in Listing 11, extends the uvm sequence class. It contains a body that generates sequence items,
randomizes them, and transmits them to the Driver. Since the await keyword is utilized, the start item and finish item methods
wait for access to the sequencer and transmit the items to the driver, respectively. The number of transactions can be specified
in the loop count, as demonstrated in line 3.

Listing 11: A sequence in PyUVM testbench
1 c l a s s EccSeq (uvm sequence) :
2 async def body (s e l f) :
3 f o r i in range (3 0 0 0 0) :
4 i n t r = EccSeqI tem (” i n t r ”)
5 a w a i t s e l f . s t a r t i t e m (i n t r)
6 i n t r . r andomize ()
7 a w a i t s e l f . f i n i s h i t e m (i n t r)

H. Sequence Item

Listing 12 shows code for EccSeqItem which extends uvm sequence item. In the listing, lines 5-7 show that it includes all
the stimuli declaration using PyVSC as specified by @vsc.randobj decorator at the top of class definition.

The eq (), str () methods are defined to compare and print string version of items respectively as shown in lines
9-13, Listing 12.

Listing 12: Sequence item defined in PyUVM testbench
1 @vsc . r a n d o b j
2 c l a s s EccSeqI tem (uvm sequence i tem) :
3 def i n i t (s e l f , name) :
4 super () . i n i t (name)
5 s e l f . c o r r e c t n = vsc . b i t t (1)
6 s e l f . d a t a i n = vsc . r a n d u i n t 3 2 t ()
7 s e l f . c h k i n = vsc . b i t t (7)
8 . . .
9 def eq (s e l f , o t h e r) :

10 same = s e l f . c o r r e c t n == o t h e r . c o r r e c t n and s e l f . d a t a i n == o t h e r . d a t a i n and . . .
11 re turn same
12 def s t r (s e l f) :
13 re turn f ”{ s e l f . get name () } : c o r r e c t n : { s e l f . c o r r e c t n }}”

V. RESULTS

The verification testbenches for the aforementioned design IPs are implemented using SystemVerilog-UVM and PyUVM.
Specifically, PyVSC library is used along with PyUVM which enables constrained randomization and functional coverage
constructs [9] for Python testbenches. The results produced using both methodologies are analyzed, compared with respect to
simulation performance and features.

A. Feature Comparison

In our work, certain features are compared between SystemVerilog-UVM and PyUVM implementations as shown in Table III.
Additionally, it is found that the design hierarchy for the PyUVM testbench does not include the top testbench in the simulator
tools which somehow hinders its debugging capabilities. But SystemVerilog-UVM includes the top module, uvm test top along
with its inner components in the simulation or debugging tools. The detailed explanation is also discussed in the work [7].

TABLE III: Comparison between SystemVerilog-UVM and PyUVM

Feature SystemVerilog-UVM PyUVM Remarks
Utility Macros `uvm object utils,

`uvm object utils begin,
`uvm object utils end

- In SystemVerilog-UVM, macros are used to register
classes in the UVM factory, whereas in PyUVM,
All classes are already registered.

Field Macros `uvm field * - In SystemVerilog-UVM, macros implement methods like
do compare, convert2string(). In PyUVM, str () and

eq () are used for converting to string and comparing
respectively.

UVM RAL Model Provides standard base
class libraries

- In PyUVM, the implementation of RAL model is in pipeline.

Logging Implements UVM
Reporting System

Uses logging module In PyUVM, reporting method adds two extra logging levels:
FIFO DEBUG (5) and PYUVM DEBUG (4)

ConfigDB uvm config db #int :: set
(null, ”*”, ’BFM’,bfm)

ConfigDB().set(None,
”*”,”BFM”, bfm)

Instead of static function calls and long incantation with various types,
PyUVM provides a singleton that stores data in the configuration
database using the same hierarchy-based control as the
SystemVerilog version. Also, PyUVM eases debugging of ConfigDB().

Importation import uvm pkg::* from pyuvm import * All the UVM classes and functions become available in our code
without referencing the package.

Instantiating
objects using
the factory

env = alu env::type id::
create(”env”, this)

self.env = AluEnv.create
(”env”,self)

In PyUVM, there is no type involved as it directly copies the handles.

uvm subscriber
class

class uvm subscriber
#(type T =int) extends
uvm component

class Subscriber
(uvm analysis export)

In SystemVerilog-UVM, uvm subscriber creates an analysis export
with the correct parameterized type. In PyUVM, since Python does not
have typing issues, a subscriber can be created by directly extending
uvm analysis export and providing the write() function.

User-defined phases Possible Not possible PyUVM only implements common phases of UVM specification.
uvm test Required Not required PyUVM does not need uvm test, though it implements it to follow the

standard with an empty extension. In run test, class can be passed directly.
Awaiting tasks - await run test() In SystemVerilog-UVM, there is no indication for time-consuming calls,

whereas in PyUVM, such calls are done using await.
TLM System * imp classes - In SystemVerilog-UVM, the * imp classes are required to provide

implementations of tasks such as put() and get(). In PyUVM, any
uvm component can instantiate uvm put port or uvm get port in
its build phase().

B. Performance Metrics

1) Simulation Runtime: The PyUVM and SystemVerilog-UVM testbenches are compared in terms of simulation run-
time with simulator Cadence Xcelium. For both ALU and ECC, a single test specified in the testbenches is simulated with
various iterations i.e., 10000, 20000, and 30000 as shown in Fig.7a and Fig. 7c. ADC testbenches include 3 tests, namely

test feature adc, test feature reg, and test stress adc. It is also ensured to keep all the simulation set-up parameters constant
for both PyUVM and SystemVerilog-UVM testbenches to make a fair comparison.

Fig.7a and Fig.7c show that the simulation run-time of PyUVM testbenches is slower than that of SystemVerilog-UVM
testbenches for all iterations. This contrast in run-time performance between SystemVerilog-UVM and Python testbenches is due
to their distinct approaches. With SystemVerilog, simulation directives and commands are employed to establish communication
with the simulator, resulting in a close integration that enhances execution and shortens run-time. In contrast, Python testbenches
interact with the simulator using VPI/VHPI, which is slower and less tightly integrated. This overhead becomes more significant
as the number of transactions increases, leading to longer simulation run-time for PyUVM testbenches.

In contrast, PyUVM performs better than SystemVerilog-UVM in terms of simulation run-time for ADC as demonstrated
in Fig.7c. PyUVM which uses Cocotb, automatically discovers all tests defined with the help of the @pyuvm.test() decorator.
Therefore it may help speeding up the simulation which is not the case in SystemVerilog-UVM.

10000 20000 30000
Number of transactions during simulation

0

10

20

30

40

50

60

70

Si
m

ul
at

io
n

ru
n-

tim
e

(in
 se

co
nd

s)

5 5.6 6.2

19.44

37.97

59.05

SystemVerilog-UVM PyUVM

(a) ALU: A test is run separately for various transactions

1
Number of transactions during simulation

0

1

2

3

4

5

6

7

8

Si
m

ul
at

io
n

ru
n-

tim
e

(in
 se

co
nd

s)

6.3

0.13

SystemVerilog-UVM PyUVM

(b) ADC: 3 tests are run in a single transaction

10000 20000 30000
Number of transactions during simulation

0

10

20

30

40

50

60

70

Si
m

ul
at

io
n

ru
n-

tim
e

(in
 se

co
nd

s)

5.6 6.1 6.5

19.33

39.8

57.72

SystemVerilog-UVM PyUVM

(c) ECC: A test is run separately for various transactions

Fig. 7: Simulation run-time between PyUVM and SystemVerilog-UVM

2) Coverage Analysis: To have a fair comparison between PyUVM and SystemVerilog-UVM, testbenches for previously
mentioned IPs are implemented in SystemVerilog-UVM with the same coverage model. The model is defined as such that it
covers all the functionalities of the design IPs as discussed in Table IV.

Our study demonstrates the feasibility of creating coverage models in PyUVM testbenches using the PyVSC library in
comparison to SystemVerilog-UVM. However, there is no evidence to suggest that PyUVM outperforms SystemVerilog-UVM
in terms of coverage closure. Nonetheless, the PyVSC library could be employed to restrict the stimuli and close the coverage

TABLE IV: Coverage model definition for the designs

Design
IP

Cover
Group(s)

Cover Point(s) Number of
Bins

Description of Cover Bin(s)

ALU cg 1

a 5

Value ranges (-2147483648, -1768769053),
(-1768769052, -866), (-865, 866),
(867, 1300000000), (1300000001, 2147483647)

b
Value ranges (-2147483648, -1654895901),
(-1654895902, -989), (-988, 0),
(1, 1928710300), (1928710301, 2147483647)

op 8 Cover all 8 operations
aXb

- -bXop
aXop
aXbXop

ADC

cg 1

en in 2 ADC module is ON (1), OFF (0)
rw in 2 Register Write (1), Read (0)
addr in

5
Value ranges from 0 to 255

data in
ana in Scope: -10V to10V

cg 2

start out

2

Conversion is started or not
busy out Transaction is ongoing
eoc out Conversion is ended or not
err out Covers if there is errored conversion

ECC cg 1

data out 8

Value ranges (0, 2975706), (2975707, 10295960),
(10295961, 56784980), (56784981, 130000000),
(130000001, 78939421), (789394220, 1248579698),
(1248579699, 2000000000), (2000000001, 2147483647)

chkout 3 Cover ranges (0, 23),(24, 89), (90, 127)
err detect 2 Error is detected
err multpl Multiple error exists
err detectXerr multpl - -

of the DUT. The results of our simulations indicate that a 100% coverage in PyUVM simulations of the ALU design IP may
have resulted from the random seed selected, as demonstrated in Table V.

TABLE V: Coverage analysis between SystemVerilog-UVM and PyUVM

Design IP ALU ADC ECC
SV-UVM/ PyUVM SV-UVM PyUVM SV-UVM PyUVM SV-UVM PyUVM
Number of Distinct Tests 1 1 3 3 1 1

Number of Transactions 30000 30000 - - 30000 30000

Coverage (%) 78.29 100 100 100 95 95

C. Empirical Observations

While implementing the verification enivironment for the design IPs i.e., ALU, ADC, and ECC with PyUVM, there are
some observations made as listed below.

1) BFM-based class approach: In SystemVerilog-UVM, an interface is used to send transactions/packets to the DUT.
The declaration of stimuli inside the interface is necessary to accomplish this. On the other hand, PyUVM uses a BFM-
based approach for communication between the DUT and testbench, which utilizes Cocotb. Therefore, no additional stimuli
declaration is required.

2) Register Abstraction Layer Modeling: In SystemVerilog-UVM, the UVM-RAL models and abstracts registers and mem-
ories of a DUT. In our work, one of the design IP i.e., ADC, includes a register block with 3 registers as explained in Table
II. Because of unavailability of the UVM-RAL, constrained randomization in the PyUVM testbench requires additional efforts
to read and write to these registers, whereas in SystemVerilog-UVM, this process is simplified through the use of UVM-RAL.
It should be noted, however, that RAL is mentioned as ”under development” as listed in Table III.

3) Ease of Testbench Development: As explained in the feature comparison, in contrast to SystemVerilog-UVM, PyUVM
does not need a class constructor. Additionally, SystemVerilog does not allow introspection whereas PyUVM enables it for
better coding style. For instance, the Monitor takes a proxy method name as an argument during instantiation. In the run phase
of the monitor, the data can be transferred using get method(), detailed in subsection IV-D. Overall, PyUVM needs less code
lines compared to SystemVerilog-UVM.

4) Continuous Assignment: The testbench implementation of ECC core needs to continuously assign encoded data from
the encoder to the decoder as input. Using the assign keyword in SystemVerilog-UVM, the assignment can be accomplished
as shown in Listing 13. On the other hand, during the PyUVM testbench implementation of ECC, it is found that data out is
not assigned correctly with the command as mentioned in the listing 14. Consequently, instances of Encoder and Decoder are
separated and encoded data is sent from the testbench instead of continuously assigning with respect to each clock edge.

Listing 13: Continuous assignment in SystemVerilog
a s s i g n d a t a i n p u t = { v i f e n c o d e r . d a t a o u t , v i f e n c o d e r . c hk ou t } ;

Listing 14: Continuous assignment in Python
d a t a i n p u t = s e l f . d u t . e n c d a t a o u t . v a l u e . b i n s t r + s e l f . d u t . e n c c h k o u t . v a l u e . b i n s t r

5) PyVSC usage: The coverage construct is already available in SystemVerilog. On the other hand, Python as HVL does
not have a covergroup. Hence, PyVSC is used for constrained randomization and writing coverage constructs. It allows saving
the coverage results in a .xml or .libucis format, which can be visualized using PyUCIS-Viewer [10].

VI. CONCLUSION

In this study, we have developed Python-based verification testbenches for three design IPs: ALU, ADC, and ECC. The
testbenches have been implemented by employing the PyUVM framework and PyVSC library. The comparison between
PyUVM and SystemVerilog-UVM has been carried out in terms of various features. Furthermore, the performance of PyUVM
testbenches has been evaluated and compared with SystemVerilog-UVM testbenches for the aforementioned designs. Despite
taking longer to run, PyUVM simulation may be more efficient as compared to SystemVerilog-UVM, provided that the clock
generation is moved from the testbench to the DUT side. PyUVM simulation enabled us to conveniently collect input data
along with coverage data in a preferred format. This data could be analyzed to create new methodologies based on Machine
Learning techniques, which will further enhance the design verification process.

REFERENCES

[1] J. Elfström, Language Specification Length? August 12, 2013 (Accessed: January 15, 2023). [Online]. Available: http:
//www.fivecomputers.com/language-specification-length.htm.

[2] H. Foster, “2022 Wilson Research Group Functional Verification Study,” Siemens Digital Industries Software, Tech.
Rep., Oct. 2022.

[3] M. DSU, PY-UVM Framework for RISC-V Single Cycle Core, https://github.com/merldsu/PY UVM Framework/tree/
main, May 8, 2023 (Accessed: August 4, 2023).

[4] I. Quinn, “Constrained Random Stimulus Generation using Python,” DVClub Europe, 2021.
[5] D. Aich, Open-Source Python based Hardware Verification Tool, Master Thesis, 2021. [Online]. Available: https://digital.

library.txst.edu/items/a82447f4-6517-4fe8-b1b8-75d473b7e6d1.
[6] T. Poikela, UVM-Python: UVM library for Python, https://github.com/tpoikela/uvm-python, 2023.
[7] D. N. Gadde, S. Kumari, and A. Kumar, “Effective Design Verification – Constrained Random with Python and Cocotb,”

DVCon Europe, 2023.
[8] R. Salemi and T. Fitzpatrick, “Verification Learns a New Language: – An IEEE 1800.2 Implementation,” 2021.
[9] M. Ballance, PyVSC: SystemVerilog-Style Constraints, and Coverage in Python, https://github.com/fvutils/pyvsc, 2019.

[10] M. Ballance, PyUCIS-Viewer, https://github.com/fvutils/pyucis, 2022.

http://www.fivecomputers.com/language-specification-length.htm
http://www.fivecomputers.com/language-specification-length.htm
https://github.com/merldsu/PY_UVM_Framework/tree/main
https://github.com/merldsu/PY_UVM_Framework/tree/main
https://digital.library.txst.edu/items/a82447f4-6517-4fe8-b1b8-75d473b7e6d1
https://digital.library.txst.edu/items/a82447f4-6517-4fe8-b1b8-75d473b7e6d1
https://github.com/tpoikela/uvm-python
https://github.com/fvutils/pyvsc
https://github.com/fvutils/pyucis

	Introduction
	Related Work
	Designs
	ALU
	ADC
	ECC

	Verification Implementation
	ECC BFM
	initialization()
	driver_bfm()
	inp_mon_bfm(), out_mon_bfm()
	start_bfm()

	Test
	Environment
	Monitor
	Scoreboard
	Driver
	Sequence
	Sequence Item

	Results
	Feature Comparison
	Performance Metrics
	Simulation Runtime
	Coverage Analysis

	Empirical Observations
	BFM-based class approach
	Register Abstraction Layer Modeling
	Ease of Testbench Development
	Continuous Assignment
	PyVSC usage

	Conclusion
	References

