
Applications of Supply Tunneling in Unified

Power Format 4.0 for Mixed Signal Design

Daniel Cross
Cadence Design Systems

+1-512-342-5560

12301 Research Blvd Ste 200

Austin, TX 78759

danielcr@cadence.com

Abstract- A new UPF HDL supply tunneling concept was introduced in IEEE 1801-2024. It allows power supply

networks defined in IEEE 1801 to be represented in simulation by HDL-native nettypes, which can carry more power

supply information than the UPF supply net. Applications and limitations of UPF HDL supply tunneling are presented,

including situations in which UPF HDL supply tunneling is not supported. Design examples and figures with sample UPF

code support the discussion. New features of IEEE 1801-2024 that help the user control tunneling behavior are shown.

I. INTRODUCTION

Within the recent IEEE 1801-2024 standard [1] (henceforth termed Unified Power Format (UPF) 4.0 in this

writing), the new concept of HDL supply tunneling was introduced. Tunneling of HDL (Hardware Description

Language) supply nets allows for simulation of supply nets using analog representations even though those supply

nets were declared as part of the power intent in a UPF file.

UPF HDL supply tunneling supports a design flow in which analog functional “islands” are embedded in a top

level design netlist constructed in an HDL language such as SystemVerilog. This flow is to be contrasted with a

flow in which all of the analog design is collected into a single partition, with its netlist governed generally by a

schematic drawn in a graphic tool, including the supply network. With the analog island flow, the supply network

can be defined in UPF as is typical in all-digital design flows.

The UPF 4.0 standard also introduces Value Conversion Methods (VCMs) that replace and expand the concept of

Value Conversion Tables (VCTs). VCMs govern the interaction between Analog representations of supply nets in

HDL and UPF-defined supply nets (which are usually represented by the UPF supply net type). Analog

representations of nets – such as custom User Defined Nettypes (UDNs) in SystemVerilog – are generally more

expressive than the UPF supply net type, which has only supply net state and voltage components. Thus, an analog

supply connection through the UPF supply network would potentially lose valuable signal information. The concept

of UPF HDL supply tunneling was introduced to eliminate this loss of information.

Other methods for preserving signal information generally have one or more of the following drawbacks:

• They are non-standard or bespoke solutions that often do not carry over to new designs or other design

tools.

• They involve the creation of additional connections directly in the netlist, in the testbench, or outside the

design elaboration altogether.

• They offer less supply configuration verification coverage by leaving important connections outside of the

unified UPF verification flow.

The UPF HDL supply tunneling features introduced in UPF 4.0 overcome all these weaknesses by providing a

standard method for forming analog supply connections using the UPF-centric design flow.

The concept of UPF HDL supply tunneling is simple in principle, but the many possibilities of different design

configurations can create confusion about its proper application. The goal of this paper is to elucidate the intent of

the IEEE 1801 Working Group about the intended function of UPF HDL supply tunneling using progressively more

detailed design examples, exposing the flexibility, usefulness, and limitations of the concept. This paper solely

represents the views of the author, and does not necessarily represent a position of either the IEEE P1801 Working

Group, the IEEE DASC Standards Committee, IEEE or the IEEE Standards Association.

II. SIMPLE CASES

A. Simple HDL supply tunneling with no UPF connection

A block diagram for this case is shown in Figure 1. Sample UPF code for this example is in Figure 2. The design

example of Figure 1 shows an analog supply source such as a linear regulator UA1 that supplies power to another

analog functional block UA2. The supply net VDDA that will connect the two blocks is created by the UPF

command in line 1 of Figure 2. The connection between net VDDA and the two blocks is created by the UPF

command in line 2. Since the supply net is created with the “-tunneling force” option, simulation will proceed by

representing the net VDDA using the custom UDN, and no translation to the UPF supply net type will occur. Even

though a VCM is specified in the UPF command, as an optimization the tool need not place any VCMs. (See

Section V for occasions when it might be an advantage to place an optional VCM.) Thus, information expressible by

the custom UDN about the power needs of UA2 can be transported to UA1 via the custom UDN and will not be lost

during translation to the UPF supply net type and back to the custom UDN.

B. Simple HDL supply tunneling with connection to UPF

Figure 3 shows a block diagram of a design example that uses HDL supply tunneling to connect two power-aware

analog blocks and also connects to non-power-aware digital blocks. Figure 4 contains the UPF code for this

example. Referring to Figure 3, analog source UA1 provides power on net VDDA for analog block UA2, but

1: create_supply_net VDDA -tunneling force -resolve unresolved

2: connect_supply_net VDDA -ports {UA1/VDD UA2/VDD} -vcm UDN2UPF

Figure 2: UPF code for simple HDL supply tunneling design example

HDL Model
(supply source)

UDN HDL Model
(load)

UDN

UA1

VDDA

UA2

Figure 1: Simple HDL supply tunneling design example

VDD VDD

also for digital blocks UD1and UD2 via UPF supply ports VDD created on lines 3 and 6 of Figure 4. In contrast

with the previous example, in this case since the connection to the UPF supply type port on UD1 and UD2 is

required, the placement of a VCM is mandatory. A UDNA2UPF VCM (which has a direction of hdl2upf) is selected

in line 8. Due to the direction of the VCM, any change in the value of VDDA will be propagated to the VDD port of

UD1 and UD2.

1: create_supply_net VDDA -tunneling force -resolve unresolved

2: set_scope UD1

3: create_supply_port VDD

4: set_scope ..

5: set_scope UD2

6: create_supply_port VDD

7: set_scope ..

8: connect_supply_net VDDA -ports {UA1/VDD UA2/VDD UD1/VDD UD2/VDD} -vcm UDNA2UPF

Figure 4: UPF code for simple HDL supply tunneling with UPF connection example

HDL Model
(supply source)

UDN HDL Model
(load)

UDN

UA1

VDDA

UA2

Figure 3: Design example for simple HDL supply tunneling with UPF connection

digital HDL

digital HDL

UPF

UPF

UDNA2UPF VCM
UD1

UD2

VDD VDD

VDD

VDD

 Figure 5 shows a similar case with a single digital block UD1. A UPF2UDNA VCM, which has a direction of

upf2hdl, was selected by the user. HDL supply tunneling from UA1 to UA2 occurs, but the VCM becomes an

additional driver on the portion of VDDA represented as UDNA. The net value delivered to UA2 will be the result

of resolving the drivers from UA1 and the VCM using the defined resolution mechanism for UDNA. Code for this

example is in Figure 6.

III. COMPLEX CASES

A. HDL supply tunneling with multiple UDNs

If the simulation tool has a defined method for merging two or more nets declared with different nettypes, HDL

supply tunneling through UPF can still occur. The HDL nets should be merged using the defined method and

simulation should proceed with the merged HDL net connecting the blocks as specified in the UPF. If no connection

to UPF is required, then no VCM is needed (except as noted in Section V).

B. HDL supply tunneling, multiple UDNs and UPF

If connection to UPF is required, the design example shown in Figure 7 and the UPF code of Figure 8 is relevant.

Instances UA1 and UA2 are both sources that drive VDDA, each through a port of a different type UDN. Loads on

VDDA include analog block UA3 and digital block UD1. As in the previous example, the merging of dissimilar

1: create_supply_net VDDA -tunneling force -resolve unresolved

2: set_scope UD1

3: create_supply_port VDD

4: set_scope ..

5: connect_supply_net VDDA -ports {UA1/VDD UA2/VDD UD1/VDD} -vcm UPF2UDNA

Figure 6: UPF code for HDL supply tunneling with UPF driver

HDL Model
(supply source)

UDN HDL Model
(load)

UDN

UA1

VDDA

UA2

Figure 5: Design example for HDL supply tunneling with UPF driver

digital HDL

UPF

UPF2UDNA VCM

UD1

VDD VDD

VDD

HDL nettypes will be handled in the HDL simulator via the defined method. Connection to UPF will be via the

VCM requested in line 5 of Figure 8, which is of type UDNB2UPF. The simulator will have to resolve the drive to

VDDA from UA1 and UA2, and pass this resolved value to the input of the VCM expressed as a net of type UDNB

(the type of UA2 and UA3). This UDNB value will also be tunneled to the supply port on UA3.

Note that the connection in line 5 could have requested a VCM of type UDNA or UDNB. The simulator has the

responsibility to pass the resolved value of the net to the VCM in the form the VCM expects it. Similarly, if UA3

had a supply port of type UDNA, the tunneled value delivered to UA3 by the simulator would have to be typed

UDNA.

1: create_supply_net VDDA -tunneling force -resolve unresolved

2: set_scope UD1

3: create_supply_port VDD

4: set_scope ..

5: connect_supply_net VDDA -ports {UA1/VDD UA2/VDD UA3/VDD UD1/VDD} -vcm UDNB2UPF

Figure 8: UPF code for tunneling multiple UDNs with UPF connection

UDNA

UDNB

VDDA

Figure 7: Design example for tunneling multiple UDNs with UPF connection

UPF

UDNB2UPF VCM

HDL Model
(supply source)

UA1

VDD

HDL Model
(load)

UA3

VDD

digital HDL

UD1

VDD

HDL Model
(supply source)

UA2

VDD

UDNB

IV. HDL SUPPLY TUNNELING AND SUPPLY SWITCHES

A. Connecting analog block supplies through a UPF power switch (HDL supply tunneling not possible)

Figure 9 shows a design example in which an analog source UA1 provides power for another analog block UA2

as well as a digital block UD1, but the power supply network contains a UPF power switch S0. The power switch is

a UPF object which by definition has input and output ports of UPF supply net type. Thus, signals driven by the

UDNA type port of UA1 must be converted to the UPF supply net type by a VCM in order to pass them to the input

of S0. Similarly, the UPF supply net type signal at the output of S0 must be converted to UDNA before it can be

passed to the input port of UA2. Direct HDL supply tunneling from the port of UA1 to the port of UA2 would

bypass the switch and lose information about the state of the switch. Since this information is very important for

simulating proper circuit function, this is therefore not an application for HDL supply tunneling. UPF code for this

design example is shown in Figure 10.

 Note that VDDA and VDDA_SW are two independent nets that do not have “-tunneling” defined. Even if these

nets were created with “-tunneling force,” HDL supply tunneling would not occur from UA1 to UA2, and the

resulting possible loss of signal information is inevitable. The sections below provide two methods for retaining the

UDN signal information.

B. Connecting an analog supply to a UPF power switch with HDL supply tunneling

One method to allow HDL supply tunneling in a design with a switch is to include in UPF an explicit connection

directly from an analog source to its analog load. This allows for preservation of detailed UDN signal information,

but discards information about the state of the switch and possibly does not represent the actual circuit design. An

example is shown in Figure 11, with UPF code in Figure 12.

1: create_supply_net VDDA

2: create_suppy_net VDDA_SW

3: create_power_switch S0 -input_supply_port VDDA \

4: -output_supply_port VDDA_SW -control_port {EN vddaEn} \

5: -on_state {on VDDA {EN}} -off_state {off VDDA {!EN}}

6: set_scope UD1

7: create_supply_port VDD

8: set_scope ..

9: connect_supply_net VDDA -ports {UA1/VDD S0/VDDA} -vcm UDNA2UPF

10: connect_supply_net VDDA_SW -ports {UA2/VDD UD1/VDD S0/VDDA_SW} -vcm UPF2UDNA

Figure 10: Code for design example with a switch

UDNA

UDNA

VDDA

Figure 9: Design example including a UPF power switch

UPF

UDNA2UPF VCM

HDL Model

UA1

VDD

HDL Model
(load)

UA2

VDD

digital HDL
UD1

VDD

S0

UPF2UDNA VCM

VDDA_SW

C. Use of an HDL power switch with UPF

Another method of dealing with switched power networks in simulation without losing detailed signal or switch

state information is to use an HDL switch model, hand-instantiated in the netlist. A diagram of a design example

showing this method is in Figure 13. UPF code for the example is in Figure 14.

UDNA

UDNA

VDDA

Figure 13: Design example for using an HDL switch model

UPF

UDNA2UPF VCM

HDL Model

UA1

VDD

HDL Model
(load)

UA2

VDD

digital HDL

UD1

VDD

S0

VDDA_SW

1: create_supply_net VDDA -tunneling force

2: create_suppy_net VDDA_SW

3: create_power_switch S0 -input_supply_port VDDA \

4: -output_supply_port VDDA_SW -control_port {EN vddaEn}

5: set_scope UD1

6: create_supply_port VDD

7: set_scope ..

8: connect_supply_net VDDA -ports {UA1/VDD S0/VDDA UA2/VDD} -vcm UDNA2UPF

9: connect_supply_net VDDA_SW -ports {UD1/VDD S0/VDDA_SW}

Figure 12: UPF code for example of tunneling bypassing a switch

UDNA

UDNA

VDDA

Figure 11: Design example of tunneling bypassing a switch

UPF

UDNA2UPF VCM

HDL Model

UA1

VDD

HDL Model
(load)

UA2

VDD

digital HDL

UD1

VDD

S0

VDDA_SW

A drawback of this method is that UPF cannot be used to place the switch as is common practice in digital design

flows. Another drawback is that the control signal must be manually routed to the switch instance in the netlist.

However, if the HDL switch model has ports typed with the custom UDN and proper behavioral code, it can pass

through all the detailed signal information carried by the UDN, while also correctly modeling the switching behavior

and its impact on downstream modules.

V. SPECIAL SITUATIONS

A. Placement of optional VCMs

If during a simulation an Information Model function such as supply_on(), supply_off(), or set_supply_state() will

be used to interact with a tunneled net, the simulation tool may choose to place an optional upf2hdl VCM on that net

even when it has no connection to any other UPF object. The desired UPF supply net will then be attached to the

VCM but have no other connections. The Information Model function, when called, will then have the effect of

changing the drive to the UDN during the simulation. If there is no VCM with a upf2hdl direction, the tool may

instead issue a warning or error rather than create the useless UPF object.

B. HDL supply tunneling priority and supply net resolution

The tunneling attribute attached to a UPF supply net when it is created can be inherited by other UPF supply nets

that are connected to it. In case of conflicts, the tunneling attribute for the joined nets will be resolved according to

the following priority:

• INHIBIT / FORCE
• AUTOMATIC

• UNSPECIFIED

Attempts to connect two nets, one of which has tunneling of INHIBIT and the other of which has tunneling of

FORCE, shall result in an error.

Any attempt to tunnel through a UPF supply net that has any resolution declared shall result in an error. This is

why the supply nets in our examples above generally have “-resolve unresolved” to make this explicit.

VI. SUMMARY

UPF HDL supply tunneling provides integrated circuit designers with a powerful way to describe on-chip power

networks using the well-known UPF language, but simulate them with much more expressive HDL nettypes. Mixing

of tunneled and non-tunneled pathways on the same power network is supported, allowing detailed simulation of

complex design configurations. Provisions are made for optimizing the representation to balance accuracy and

simulation performance. The UPF HDL supply tunneling feature is defined in the recently released IEEE 1801-2024

(UPF 4.0) standard.

ACKNOWLEDGMENT

The author thanks his colleagues of the P1801 Working Group for their creativity in helping to devise many of the

design examples of this paper.

REFERENCES
[1] "IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems," in IEEE Std 1801-2024 , (Publication

pending).

1: create_supply_net VDDA -tunneling force

2: create_suppy_net VDDA_SW -tunneling force

3: set_scope UD1

4: create_supply_port VDD

5: set_scope ..

6: connect_supply_net VDDA -ports {UA1/VDD S0/VDDA}

7: connect_supply_net VDDA_SW -ports {UD1/VDD S0/VDDA_SW UA2/VDD} -vcm UDNA2UPF

Figure 14: UPF code for example using an HDL switch model

