
Improvement of UVM Scenario Generation,
Control and Reproducibility using

Portable Stimulus (PSS) for IP Validation

Robert R. Martin Alan M. Curtis Gopinath L. Narasimhan Qingwei Zhou
Intel Corporation Intel Corporation Synopsys Intel Corporation

1900 Prairie City Road, 1900 Prairie City Road, 690 E Middlefield Rd, 1900 Prairie City Road,
Folsom, CA, 95630 Folsom, CA, 95630 Mountain View, CA, 94043 Folsom, CA, 95630

Abstract - In recent years, validators have tried to augment their UVM test-suites by employing the Portable Test &

Stimulus Standard (PSS) methodology where the main advertised benefit was translation of stimulus across different levels
of validation (LOVs). ‘Portability’ has been the primary focus in creating random stimulus to hit platform agnostic DUT
coverage. While these features are popular, they aren’t the only advantages. Conventional validation test-suites which are
often hand-written and rely heavily on UVM sequence libraries, suffer from two problems (1) Test reproducibility, due to
test and testbench changes over time & (2) Lack of indicators of test paths and total actual validation space covered. This
paper highlights a PSS Proof-of-Concept (POC) performed on the Intel Graphic's Memory fabric verification framework.
We investigated how the following never-done-before features can be realized in a UVM environment: (1) Use PSS as a test
configuration manager or to generate interesting test scenarios (2) Iterative stimulus coverage improvement (via a coverage
report analysis without running DUT model elaboration / simulation) (3) The best PSS generated tests (high coverage /
other criteria) selected for reproducibility. This is a huge deal as the same seeds run over the course of RTL development
may produce varied results if the testbench, test or constraints change.

PSS constraints are defined in a Domain Specific Language (DSL) with C++ / SV-like syntax. Stimulus intent can be

modeled with scenario entities such as 'actions' & 'flow objects'. Actions may be atomic or instantiate other actions &
traverse them via activity blocks. Typically, atomic actions are mapped to UVM sequences & tasks respectively to drive
hardware interfaces. The PSS scenario model, its constraints and mapping information are passed to a novel Synopsys PSS
tool - VCPS. The tool picks valid paths “P” for each scenario and can be made to generate random cycles “R” per path.
Users specify the total number of tests “N”. The tool generates transactions depending on the DSL constraints.

Total number of transactions (T) = N tests * (P paths / test) * (R transactions / path).

All these new PSS tests can be included along with legacy UVM tests and elaborated together along with the DUT. They

add interesting scenarios to the existing UVM validation test plan and can be selected to run later, on demand. These
deterministic, scenario-specific tests ensure consistent behavior across the project timeline. The PSS model generates
stimulus pre-simulation aka PSS solve time. This way the stimulus is not influenced at run-time by seeding the simulator’s
constraint solver. This solves problem #1 - stimulus reproducibility. PSS augments the IP test coverage by generating
stimulus using two modes of abstraction: (1) Unique PSS Tests: The DSL Scenario Generator directly schedules unique
solutions of transactions that the existing UVM framework converts into hardware bus cycles. (2) Hybrid Randomization:
PSS control knobs pass info to their UVM counterparts, which control sequence variables to drive target interfaces. Both
modes create a coverage report of PSS test stimulus via user written DSL covergroups. If unsatisfactory, the DSL
constraints were iteratively tweaked for better results. This solves problem #2 - test-suite validation space coverage. This is
all done pre-simulation in a fraction of the time compared to post-simulation coverage analysis. For example, a test with 1
path & 1 random cycle took 1.79 seconds for PSS compilation / elaboration / linking & solve time while in comparison a
test with 100 paths & 100 random cycles per path (10K transactions) took only 27 seconds! So, after just 27 seconds a 10K
test can be analyzed for coverage holes even before a simulation is run saving hours depending on the LOV. This reduces
overall compute cost resulting in huge cost savings! Thus, a coverage-based golden test can be run throughout the project
lifecycle to ascertain RTL health. This is crucial for continuous integration code storage systems like Gatekeeper. It provides
deterministic behavior, eliminates randomness in simulations, facilitating fixed runtimes, saving a lot of Intel $$$ (spent in
extra compute, high-mem machines & failures). Using these two modes not only were we able to achieve 100% stimulus
coverage (aka PSS scenario coverage) but we also achieved 100% functional coverage (typically SV, hardware or traditional
cover groups and crosses). In addition, DSL action knobs were also mapped to UVM framework knobs that controlled
traditional validation features such as idle delays, uvm config object modifications, cycle out of order-ness, clock & mid-
test-reset testing, memory map loading/dumping and uvm callbacks. DSL also allows powerful aspect-oriented
programming concepts (code extension) beyond traditional OOP, great for sharing stimulus across environments / teams.

PSS tool can enable user queries for pattern or path coverage on the tests generated from user's PSS scenario model.
In the near future, any design engineer, validator or architect can obtain confirmation if a required scenario was generated
in the PSS tests by sending assertion style queries to the tool. The tool will also report which generated test satisfied the
query, which can be goldenized for feature specific testing! To add icing on the cake, machine learning algos could also
create PSS tool queries from past regressions truly revolutionizing how content is generated, analyzed and deployed on
future products. This successful POC proves that the industry has only begun to scratch the surface with what can actually
be accomplished with PSS unleashing the true potential of this methodology.

I. INTRODUCTION
Over the past couple of years, the widespread use-model and advertised features of the Portable Test and Stimulus

Standard (or PSS) has been the translation of stimulus across different levels of validation. Common stimulus is used
to validate RTL across multiple units, clusters, pipes, fullchip simulation and finally emulation. In other words, its
namesake, the ‘portability’ aspect has been given a lot of attention. Rightly so, there are clear benefits to re-use the
stimulus across simulation/emulation [1] and to use the random stimulus generation to hit platform agnostic coverage
of the underlying RTL [2]. However, while these capabilities seem to be the most popular, they are definitely not the
only ones. The industry has only begun to scratch the surface with what can actually be accomplished with PSS.

This paper highlights the use of PSS during Intel’s graphics IP development. The graphics Memory Fabric Interface
(MFI) verification environment was used as a proof of concept (POC) to investigate how PSS can be used as not just
a random stimulus generator, but also as a Scenario Generator or a test configuration manager and a showcases
reproducible stimulus using coverage. We used a brand-new Synopsys Tool VCPS (Verification Continuum ‘Portable
Stimulus’) [3] [4] to implement and test PSS features and execute MFI IP testplan scenarios.

The flow implements control knobs in PSS that can be applied to either UVM variables or knobs which in turn
control the actual flow of a uvm test. In other words, SV uvm constraints, which provide random distributions per test
seed, are replaced by PSS constraints to determine possibilities of UVM unique test scenarios that can be inserted
directly into the verification test-suite. With this concept rather than use PSS’ random stimulus nature and hope that
some of the seeds might hit an interesting scenario, we program rules into PSS and the tests that VCPS creates generate
the ideal conditions required by the spec.

Finally using coverage-analysis, a set of ideal tests can be picked for reproducibility which can replace legacy
UVM tests. As project development warrants TB and uvm test modifications, a certain seed will not retain the same
functionality across the program. So, a passing-test “A” with seed 1 at the end of a project does not guarantee that the
scenarios of this test “A” with seed 1 at project start was the same. Since PSS scenarios are not seed based, (and are
static) using coverage, the best golden test can be selected to be used across validation milestones to determine RTL
health and ensuring backwards test compatibility. This is crucial when applied to continuous integration systems such
as gatekeeper-code-controlled repositories. It provides deterministic behavior and eliminates randomness in daily-
simulations providing a consistent turn-in timeline.

II. THE PSS ENVIRONMENT SETUP AND FLOW

The Portable Test and Stimulus Standard v2.0 specification [5] contains the Domain Specific Language [6] (DSL)
LRM used for test modeling and scenario description. Fig. 1 shows the PSS ‘test generation flow’ steps that
demonstrate test control and reproducibility.

 +incdir <pss_test_dir>

3 PSS
Tool

(VCPS)

1 PSS/DSL
Model of
Scenarios
(model.dsl)

“N”
tests

4 <pss_test_dir>

Pss_test_1.sv

Pss_test_2.sv

Pss_test_3.sv

Pss_test_N.sv

...

5 Model /
UVM TB

Verification
Collateral
& Tests
(*.svh)

6
Model

Elab
Tool
(VCS)

7 simv
(PSS tests +
UVM tests)

9
Design
Under
Test

OR

XEFI
Val

comps

Generates
SV/UVM
Test &

Scenario
Code

8 Test
Simulation
Tool (VCS)

Select test(s)
from pool OR
user provided

testl ist

2
agent_map

.xml

Start

Fig. 1: PSS Test Generation Flow

1. The flow starts with test scenarios described in DSL (model.dsl. Refer Fig. 2). They are a list of actions that can
be scheduled either in parallel or sequential. Actions in PSS/DSL are analogous to UVM sequences. Compound
actions are like virtual sequences and atomic actions are like sequences or sub-sequences.

Note: In UVM, the uvm_test_top component specifies the sequencer on which the test sequence must run. Likewise, in DSL, the
highest hierarchy component - “pss_top” needs to be able to map its actions to run on real objects. These pss objects are called
“resource pools” and must be mapped to uvm sequencers. In Fig. 2 the pss_top component declares multiple resources which will
be mapped to uvm sequencers in Step 2.

Fig. 2: PSS/DSL Model of Scenarios (Filename: model.dsl)

2. Next, an agent_map.xml file is defined to map a resource pool to a uvm sequencer. Fig. 3 depicts a mapping file
where 3 sets of resource pools - mfi_virt_seqr_res, mfi_seqr_res and mfi_clk_res need to be mapped to their
corresponding UVM sequencers. (Each PSS resource is assigned an instance_id that can be looked up in the
config_db to complete the mapping to a UVM sequencer)

Fig. 3: PSS resource to UVM sequencer mapping (Filename: agent_map.xml)

3. The model.dsl scenario file, the agent_map.xml along with the number of tests “N” and runline switches are
passed to VCPS. The tool-invoking runline command indicates what top level ‘root_action’ is to be executed to

generate testcases. From Fig. 2, the model.dsl contains the “pss2uvm_action” used as the root_action. The tool
interprets DSL actions defined and creates N uvm_test extensions to allow sequences to be controlled via PSS.

4. All the unique tests created by PSS can be suitably stored in a common directory <pss_test_dir>.

5. Any existing UVM collateral / tests that PSS is intended to interface with/control is created and represented in
this step.

6. The UVM framework (Step 5) and the contents of <pss_test_dir> (via +incdir) (Step 4) are now elaborated
together using a standard compiler (VCS).

7. The output of elaboration is a simv object that contains any traditional UVM tests or any PSS tests passed in
from Step 4.

8. Now that the user’s test suite contains all these flavors (pss & uvm), all that remains is to set the uvm runtime
switch +UVM_TESTNAME to the intended test to run.

9. Existing traditional UVM tests if picked will be run as normal. If a PSS test is picked, then the scenarios depicted
in model.dsl file are what get executed during this step.

With this basic framework in place, the agent sequencers that the DSL actions were mapped to (Fig. 3) will get the
required items. If multiple actions are mapped to multiple sequencers, then the ordering picked by the DSL test is
honored. This is how the MFI testplan (normally executed in UVM), can now have choreographed scenarios (DSL
actions) that are equivalent to sequence layering scheduling.

III. SOLUTION MODE 1: THE PSS SCENARIO-GENERATION AND COVERAGE

All DSL actions are expected to have constraints on random variables. These constraints allow for coverpoint and
cross coding constructs. VCPS, after code compilation, interprets the DSL scenarios and “solves” any constraints,
rules, conditional logic and directed actions to create test scenarios. After the mapping file of action->sequencer is
interpreted, a coverage urg report is generated. This crucial feature indicates the “solve/generation-action” coverage
of the DSL action, without actually running a simulation. The tool only takes a few seconds (Refer Table 1) to
generate the scenario coverage which can be analyzed. If the analysis proves unsatisfactory, the DSL constraints,
generation logic, number of random tests or cycles can be tweaked. This is done iteratively (Refer Fig. 4 & Table 2)
until expected scenarios are hit.

Table 1: VCPS Tool Computation Time (seconds)

Modify
DSL

Constraints

3 PSS
Tool

(VCSP)

1 PSS/DSL
Model of
Scenarios
(model.dsl)

“N”
tests

Generates
SV/UVM
Test &

Scenario
Code

2
agent_map

.xml

Start

urg
report

Yes

Coverage
Good?

No

Fig. 4: PSS solve-time generated coverage analysis

Num
Tests

Random
Cycles / Test

Total Random
Cycles

Compile
Time (s)

Elab
Time (s)

Link
Time (s)

Solve
Time (s)

Total Generation
Time (s)

1 1 1 .616 s .172 s .612 s 0.390 s 1.79
10 1 10 .620 s .174 s .603 s 0.800 s 2.20
10 10 100 .614 s .180 s .602 s 1.360 s 2.76

100 10 1,000 .619 s .177 s .609 s 6.690 s 8.10
100 100 10,000 .618 s .179 s .605 s 25.610 s 27.00

Table 2: Iterative Coverage Analysis & Improvement

 Iteration #1: PSS generation coverage for 10 tests Iteration #2: PSS generation coverage for 30 tests (Improved)

For illustration, during the dev process, the cross-coverage (CR_*) urg report snapshots in Table 2 show an
improvement in covered cases using the iterative cov-analysis process. Coverage improved when the number of unique
tests generated by VCPS was increased from 10 to 30. Cross coverage improved from 17.5% to 38.96 % with very
little user effort. (Overall variable coverage also improved from 94.44% to 97.22%)

Thus, any testplan scenario can be evaluated at generation time (in seconds) for a fraction of the cost.

(This is compared model elaboration and regression test run times!).

Note: VCPS determines the max number of legal paths (num_legal) that the DSL code implies. If a user requests to
generate N tests where N < num_legal then the tool generates N tests. If N > num_legal then the number of tests will
get capped at the num_legal. At this point coverage will not improve by increasing the number of tests/seeds. Fig 5
shows the VCPS solution graph outputs from the tool that represents the possible PSS scenario paths/trajectory that
each generated PSS test can take. Again, since these paths are possible based off validation space, it is not seed based.

Fig. 5: VCPS Solution Graph: representing test paths and possibilities (with & without DSL flow objects)

IV. SOLUTION MODE 2: PSS- UVM HYBRID RANDOMIZATION

The MFI Validation testplan consisted of testing two libraries – a front-end UVM scheduler of traffic
(MFI_uvm_pkg) and a back-end hardware implementation of the spec (MFI_val_common). Testing required injecting
cycles of varying attributes from a UVM sequence to a UVM agent which would drive out a hardware library
component. This emulation-friendly hardware library had components which housed a lot of internal fifos, arbiters
and combinatorial logic. Cycles of varying DLEN’s (data lengths) would arrive on multiple command and data
channels creating different fifo (full/almost-full) conditions received from UVM. Later, arbitration of these cycles
across channels had to be done which would determine a winner to be sent to the RTL. These cycles were also back-
pressured by RTL based off credits.

A robust validation platform was created which could send in all possible cycles. This required 100% coverage of
back-to-back cases of all types in the hardware backend library to ascertain accurate functionality. While the UVM
sequence generation was successful in generating controlled traffic, the results were not fully deterministic (based off
seed) and lead to a lot of wasted cycles without much coverage improvement. Visual analysis of logs and sequence
code indicated that an expected golden series of cycles should be realized, but varying hardware conditions, arbitration
and delays across parallel channels didn’t accurately reflect the intent. This coupled by random seeds and behavior
almost never generated the optimal distribution expected from such an environment. This is where PSS testcases, that
were uniquely generated to perform a certain sequence of events, came to the rescue!

Fig. 6 depicts how DSL knobs/variables (randomized by actions) and the starting of sequences can get randomized
or scheduled / choreographed into the PSS test code. This in-turn would control their UVM knob / variable
counterparts. The DSL code employed control knobs (KAp, KBp, KCp, KDp) and variables (V1p, V2p, V3p) which
were either randomized completely or constrained based on the MFI spec. These knobs were then configured to either
control sending in sequences of different types or would in-turn pass on their settings their UVM knob counterparts
(KAu, KBu, KCu, KDu) and variables (V1u, V2u, V3u). The big difference here is that the UVM knobs (normally
random in a purely uvm setup) now received a pre-determined biasing per test mapped and randomized from DSL
actions. This was not per seed but rather per unique PSS test. So, if the same test was run with different seeds the
order of cycles on the UVM side wouldn’t change as the stimulus scheduling came from PSS.

V. PSS TEST REPRODUCIBILITY

The “PSS Generated Test” from Fig. 6 is an example of any of the “pss_test_*.sv” tests from Fig. 1 that are
generated by VCPS. This test, now-pregenerated can be run as part of the normal regression suite on the UVM side.
Each week, VCPS could be run to generate new tests and they could be used to produce unique (and deterministic)
flavors previously statistically (but not deterministically) possible with purely randomized UVM tests.

DSL Code
(model.dsl)

KA
p

KB
p

Actions that
randomize variables &
knobs with or without

constraints

Exec body()
1) performs the

scheduling of traffic
2) Scenario
generation

UVM TEST

PSS
Generated

Test

(EXTENDS)

UVM ENV

KA
u

Hardware
DUT
Top

V1p V2p V3p

TEST VSEQ

KC
p

KD
p

KB
u

Req Seq1
KC
u

Rsp Seq2
KD
u

V1u

V2u

V3u

MFI Req Agent

SQR DRV

MON

V
I
F

MFI Rsp Agent

SQR DRV

MON

V
I
F

Start

H/w Req
Module

I
F

H/w
Channels,

Fifos,
Arbiters

H/w Rsp
Module

I
F

H/w
Channels,

Fifos,
Arbiters

Start

Fig. 6: PSS knob & variable mapping to their UVM counterparts

Hardware coverage can be collected using VCS and coverage urg reports can be generated. When certain important
features need dedicated tests, the PSS regression coverage can be analyzed to find a golden-test that fits the scheduling
of traffic for the feature. This golden test (let’s say pss_test_3.sv run from a weekly regression) can now be separated
from the pss generated tests and moved into the traditional UVM testsuite. This test can now be run at any point in the
future and it will always generate the same stimulus giving the uvm framework an automatically generated focused
test that is feature specific. As mentioned in the introduction, a test like this will be deterministic across all milestones
as it is scenario-based and not seed-based.

This is how PSS tests can be implemented as reproducible UVM tests. If such a set of scheduled PSS tests could be
picked after coverage analysis, then they be used in a Continuous-Integration systems like gatekeeper. This way the
Turn-in (TI) process will execute not a random UVM test with a fixed seed but a feature-based, deterministically
scheduled/sequenced test with only random attributes such as delay or flows that do not alter the feature expectation.

This reduces randomness during the TI process allowing for a deterministic gatekeeper-turn-around compute-time
saving a lot of Intel $$$ that are currently spent in extra compute, high memory machines, tool-licenses and regression
failures.

VI. RESULTS: MFI TESTPLAN IMPLEMENTATION, STIMULUS CONTROL & COVERAGE

The MFI testplan required a robust constrained random UVM testsuite. This was made possible by leveraging
powerful PSS features. The UVM test scenarios defined in the validation test plan were implemented using PSS/DSL
control knobs (efficient control) producing deterministic tests (scenario generation) that can be re-used for feature
specific testing (reproducibility). The generation time stimulus urg coverage reports were a very good indication of
scheduled traffic to the MFI validation framework. This was tweaked very quickly, and coverage improvements
observed without the need for model-elaboration and large regression simulation times (Table 1). This is a huge
benefit. Hard to hit scenarios can now be easily devised without sacrificing uvm randomness.

The MFI libraries also required to provide other validation capabilities to the GFX and Media validation teams.
These features, part of the validation test plan were also verified using PSS. Some of novel ideas summarized here
were never done in the industry using portable stimulus. Actions were written to control UVM knobs for – Idle delays,
mid-simulation config-object modification, out-of-order enable/disable, clock and reset modification, mid-test-reset
issue and recovery, MFI memory and map loading/dumping and mid-simulation MFI/UVM callback inclusion were
all tested. These could be choreographed on top of any random sequences that the UVM test was already calling for
MFI cycle attribute verification. The PSS test could add any choreographed functionality before, during or after the
existing UVM test it was extending, proving to be an invaluable additional to a traditional UVM verification
framework.

Technical Comparison of Coverage: Our prior traditional UVM testplan approach (non-PSS) that was manually
coded, analyzed, maintained and regressed over time eventually resulted in 100% functional coverage. This was a
result of a many weeks of UVM development, test writing, coverage analysis, coding and regressions and 1000s of
seeds. We then repeated our functional coverage experiments using the Portable Stimulus tests from Solution Modes
1 and 2 and achieved the same results in a fraction of the time with a reduced number of tests. Refer to Table 3.

The main-takeaway is that none of the PSS tests were hand-coded but rather were auto-generated from the tool. In
the future if the constraints are defined and functional coverage indicators are available, test writers do not need to
spend hours creating constrained random tests to manually bring up coverage. This is a huge benefit. To normalize
UVM vs PSS results we reran 300 UVM test instances vs 300 PSS tests.

The 300 UVM tests: were 3 hand-written unique test templates developed, run with 100 associated configurations
by way of seeds (ie 3x100 tests). The 300 PSS tests: were automatically generated in seconds by the VCPS tool from
1 DSL model with 300 unique random testcases (ie 1x300 tests). The 300 PSS tests showed better results as indicated
in Table 3.

Thus the functional coverage obtained from the PSS tool (Results II) provided near comparable and slightly higher
coverage than manually written UVM tests (Results I) in a fraction of the time. This time savings is many magnitudes
of orders of time saving weeks of development time.

UVM vs PSS Functional Coverage Analysis & Comparison

Case I: UVM Testplan / Testsuite Coverage Results – I

(Average = 98.34%) (Total tests = 300)

Case 2: PSS Auto-Generated Test Coverage Results – II

(Average = 99.58%) (Total tests = 300)

Functional Black Box Coverage I(a) Functional Black Box Coverage II(a)

Functional White Box Coverage I(b) Functional White Box Coverage II(b)

VII. CONCLUSIONS AND FUTURE PLANS/USE

Portable stimulus means a lot more than transposing content across different levels of validation or environments.
There are powerful DSL constructs, aspect-oriented programming concepts that allow for code extension well beyond
traditional object-oriented programming which is great for sharing stimulus across envs and teams. Stimulus
generation times are now greatly reduced, and content can be ratified and perfected even without simulation, using
coverage. Teams will benefit greatly by using highly deterministically scheduled UVM tests eliminating gross
variation in test-run times saving compute $$$.

Currently, VCPS provides an excellent supplement to any UVM environment but there is more coming! In the near
future, the stimulus generation tool will also keep track of scenarios in a coverage database (covdb) automatically.
Users will not need to code DSL coverage to interpret the scenario. Instead, an SVA (system verilog assertion) query-
based system will allow any validator, designer or architect to query the stimulus database generated to obtain
confirmation if a required scenario was generated. In addition, VCPS will also determine and report which generated
test satisfied the input query so this can be goldenized. This is perfect for feature specific testing! To add icing on the
cake this PSS tool capability integrated with queries that are the output of Machine Learning algorithms from past
regressions will truly revolutionize how content is generated, analyzed and deployed on complicated ASIC products.

ACKNOWLEDGMENT

Special thanks to our technical colleagues from Synopsys: Bernie Delay and Hillel Miller who we collaborated on this
PSS proof of concept, tool development and testing. Working with a brand-new methodology was exciting and cutting
edge but it had its challenges along the way which we went past together. It was a rewarding experience to learn a
new language DSL along with different validation BKMs to achieve UVM controllability. Their feedback and aid in
realizing a UVM testplan via PSS was greatly appreciated and we look forward to seeing more mainstream adoption
and standardization of the tool. We would like to also thank the Intel Graphics tools teams for providing the necessary
back-end help (VCPS Installation, Synopsys licensing etc) so we could perform all our experiments.

REFERENCES

[1] S. Vasu, N. Venkatesh, J. Maitra, Intel Corporation, “Media Performance Validation in Emulation and Post Silicon Using Portable Stimulus
Standard”, Paper ID 7067, DVCON 2021.

[2] J. Maitra, V. Singh, “Low Power Validation of Heterogeneous SoCs Using Portable Stimulus Standard”, ID 124.13, DAC 2019.
[3] Synopsys VCPS datasheet - https://www.synopsys.com/content/dam/synopsys/verification/datasheets/costart-portable-stimulus-ds.pdf
[4] Synopsys VCPS User Guide - https://spdocs.synopsys.com/dow_retrieve/latest/vg/vc_ps/PDFs/vcps_user_guide.pdf
[5] PSS 2.0 Specification - https://www.accellera.org/images/downloads/standards/Portable_Test_Stimulus_Standard_v20.pdf
[6] Domain Specific Language - https://en.wikipedia.org/wiki/Domain-specific_language

