
Tree Data Framework for Code Generation:
Application of Generating UVM Testbench for

Complex Designs
Chenhui Huang, Yu Sun, Divyang Agrawal

Tenstorrent Inc.

•Consistency and quality
• Fewer errors, faster turnaround on fixes
•Reduced time to production

Logic Implementation Functionality

Why do DV engineers prefer generated code?

Bug Bugs Bugs!x =

•Macros as building blocks
• Templates where code can be inserted
• Configuration options to customize macros
• Code insertion – statically or dynamically

Inherent shortcomings of this approach!

Traditional code generation

Gingko framework

• Code generating framework
• Uses the tree data structure
• Applied to a UVM testbench generation flow, but language agnostic
• GenUVM is proof of concept application and can do more

How Gingko generates a UVM testbench
RTL Design Gingko Framework

Collection Phase

Configuration Phase

Generation Phase

Web GUI

Python Lib

Database

UVM Testbench

Collection Phase
RTL Design

step 1

FSDB

step 2

Signal and Hierarchy

SQL Database

step 3

Step 1: Generate the FSDB from design (single timestamp)
Step 2: Extract RTL signal and hierarchy information
Step 3: Upload and store in SQL database

RTL database contents
Signal Property Extracted from FSDB SHA Tag for each signal

Configuration Phase
RTL Signal AVerification Signal A

RTL Signal BVerification Signal B

……
Signals Mapping

Verification Signal
If input or output?
Data type?
If need random?
……

Signal Attributes Configuration

Signal A

Grouping

Signal B

Signal C

Signal B

Signal D

Build the Dependency

Component Element (CE) Type

• Each tree node has one CE type
• Each CE type represents different functionality in the tree
• Each CE type has its Python callback handler code
• Handler code is called during the tree traversal in the generating

phase
• Each CE type can have multiple pieces of handler code

Testbench structure

Tree data structure: Agent

Generation phase

Based on the CE type handler code, the framework can generate
different targets while logic structure stays the same.

Why database?

• Separate data, logic and view instead of the traditional monolithic
script to the code generation framework
• Retains history on design and testbench, enables reuse
• Foundation for enable AI based testbench generation
• Standard SQL API reduces the development cycle

Gingko: Advantages

• Testbench is independent of language, methodology and tools
• Flexible representation via the tree data structure
• Significantly less maintenance compared to metadata and template

libraries
• Extremely fast turnaround on TB generation with changes in design
• Additional applications such as coverage, design quality analysis and

more

Gingko: Constraints

• Less efficient for directed sequences
• Learning curve for DV engineers

Conclusion

• Tenstorrent has successfully deployed Gingko to generate UVM
testbenches for various sub-units of a high-performance RISC-V CPU
• Significant learnings as engineers use Gingko leading to future work

Future work
• Extend usage of Gingko to generate more than UVM testbench
• Enhance the sequence model and diversify the stimulus
• Apply machine learning algorithm to generate testbench structure

Thank you for Listening

Questions

