
The Evolution of RISC-V 
Processor Verification

Aimee Sutton and Lee Moore, Imperas Software
Mike Thompson, OpenHW Group



Agenda

• Introduction to the OpenHW Group
• The first generation CORE-V-VERIF environment
• The second generation CORE-V-VERIF environment
• RISC-V Verification Interface (RVVI)
• The third generation CORE-V-VERIF environment
• Asynchronous event verification
• Areas for future work



OpenHW Group 

• A not-for-profit, global organization registered in Canada and Europe.
• Almost 100 Members and Partners from all regions of the world.

• Members (corporate & academic) collaborate in the development of 
open-source cores, related IP, tools and SW.

• Primary focus is the CORE-V Family of open-source RISC-V processors.



CORE-V-VERIF

• A UVM environment for RISC-V processor verification
• Open source and available on GitHub:
• https://github.com/openhwgroup/core-v-verif

• Developed by the OpenHW Group’s Verification Task Group (VTG)
• Contributions from Silicon Labs, Imperas, EM Microelectronic
• On-going work by Silicon Labs, Imperas, Thales, Dolphin, NXP, Intrinsix

• Created in 2019; evolving and improving ever since
• In use at many academic and commercial organizations today

https://github.com/openhwgroup/core-v-verif


First generation CORE-V-VERIF



First generation: operation

• DUT and reference model execute the same program
• As each instruction retires, state variables are compared
• mismatches reported as errors
• know as the “Step-and-compare” method

• External interrupts and debug requests sent to both DUT and 
reference model
• known as “asynchronous events”



First generation: implementation

• Imperas OVPSim ISS used as reference model
• saves testbench development effort
• model operates at a different abstraction level than DUT
• difficult to handle instructions with side effects

• Tracer was an ad-hoc behavioral model exposing internal state
• GPR, PC, and CSR values



First generation: challenges

• ISS always receives async events (interrupts, debug requests) at the 
start of an instruction
• RTL will observe these at a different time (before, during, or after the same 

instruction)
• Result: false-negative comparisons

• Difficult to handle instructions with “side effects”
• each async event required specific code to model these side effects
• Result: testbench is prone to bugs and difficult to maintain

• Tracer and step-and-compare logic required frequent updates



Second generation CORE-V-VERIF



Second generation: Improvements

• Ad-hoc tracer from first generation replaced
• new tracer extends the RISC-V Formal Interface (CORE-V RVFI)

• Async events are connected to the core RTL but not to the ISS
• Step-and-compare logic simplified (version 2.0)



CORE-V Tracer

• Derived from the RISC-V Formal Interface (RVFI)
• Enhanced for verification
• Meets the needs of step-and-compare

• Unambiguously identifies instruction retirement
• Unambiguously reports synchronous traps and asynchronous 

exceptions (interrupts and debug requests)
• Exposes the state of the core (PC, CSRs, GPRs)



Asynchronous events with CORE-V Tracer

• Reference model is not directly connected to asynchronous events
• Tracer monitors and reports these events; informs the reference 

model to interrupt normal program flow 
• Example: debug mode request
• signals rvfi_dbg and rvfi_dbg_mode valid when instruction is retired
• rvfi_dbg contains debug cause
• clear rules specifying how debug entry is identified



Second generation: challenges

• Asynchronous event handling
• reference model cannot provide independent verification of async events
• Example: 

• multiple interrupts are enabled and pending
• reference model cannot verify the correct one (by priority) was serviced

• CORE-V Tracer additions to support step-and-compare bespoke to 
particular processor
• tracer interface would need to change for each new RISC-V core



RISC-V Verification Interface (RVVI)
• Common components should have 

standard interfaces
• Standardize communication between 

RTL, testbench, and RISC-V VIP
• RVVI-TRACE: signal level interface 

(tracer) between RTL and testbench
• RVVI-API: function level interface 

between testbench and RISC-V VIP
• RVVI-VVP: virtual verification 

peripherals

RISC-V
Core
RTL

(DUT)

Simulation 
control

RISC-V
Verification 

IP

Testbench

RV
VI

-T
RA

CE
RV

VI
-A

PI

Tr
ac

er

RVVI-VVP

https://github.com/riscv-verification/RVVI

https://github.com/riscv-verification/RVVI


RVVI-TRACE
https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

• Generically defines information to be 
extracted by tracer
• SystemVerilog interface
• Includes functions to handle 

asynchronous events
• implements a queue to store 

multiple net changes during
a single interval

RISC-V
Core
RTL

(DUT)

RISC-V
Verification IPTr

ac
er

RV
VI

-T
RA

CE

valid
insn[..]

net_push()
net_pop()

. . .

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE


RVVI-API

• Standard functions that RISC-V 
processor VIPs need to implement
• Supports a co-simulation, continuous 

comparison methodology
• C and SystemVerilog versions 

available
• Example: functions to marks 

registers/fields as “volatile”

rvviRefEventStep()

rvviRefGprsCompare()

rvviRefPcCompare()

rvviRefCsrsCompare()

rvviRefGprGet()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefCsrGet()

RV
VI

-A
PI

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h


Third generation CORE-V-VERIF



Third generation: Improvements

• CORE-V tracer replaced with an RVVI-compliant tracer
• Imperas Reference model replaced with ImperasDV verification IP 

(VIP) that incorporates the reference model
• Step-and-compare logic eliminated



RISC-V CPU DV using Verification IP

5 components of RISC-V CPU DV
• DUT subsystem with ‘tracer’
• Tests: (random) instruction test 

generator and directed tests
• Functional coverage 

measurement
• Test bench / harness
• ImperasDV subsystem

• RVVI-TRACE i/f to core tracer

• RVVI-API i/f to verification IP
• RVVI-VVP virtual verification 

peripherals

RISC-V
Core
RTL

(DUT)

Simulation 
control

mem

RISC-V
Reference 

Model

Predictive engine

ImperasDV

Test

Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

trace2log

SystemVerilog

Scoreboard

C

Tr
ac

er

Configuration

Synchronization

Pass/Fail 
determination

trace2cov

Random
ISG

Functional 
coverage

RVVI 
Virtual 

Peripheral



Asynchronous events with ImperasDV

• Net changes received as a set
• Predictive engine analyzes all 

potential legal scenarios
• Produces an error if the DUT’s 

response does not match one 
of them



Future work

• Incorporate machine-generated functional coverage code into CORE-
V-VERIF
• using data sampled from RVVI-TRACE i/f

• Advanced RISC-V Verification Methodologies (ARVM) projects
• https://github.com/openhwgroup/programs/tree/master/TGs/verification-

task-group/projects

https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects


To learn more...

• Active OpenHW Projects
• https://github.com/openhwgroup/core-v-cores

• The CORE-V-VERIF environment on GitHub
• https://github.com/openhwgroup/core-v-verif

• The CORE-V-VERIF Quick Start Guide
• https://docs.openhwgroup.org/projects/core-v-

verif/en/latest/quick_start.html

• Imperas RISC-V processor Design Verification solutions
• https://www.imperas.com/index.php/imperasdv

https://github.com/openhwgroup/core-v-cores
https://github.com/openhwgroup/core-v-verif
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/quick_start.html
https://www.imperas.com/index.php/imperasdv


Questions

• Thank you for attending

Aimee Sutton (aimees@imperas.com) 
Lee Moore (moore@imperas.com) 

Mike Thompson (mike@openhwgroup.org)

mailto:aimees@imperas.com
mailto:moore@imperas.com
mailto:mike@openhwgroup.org

