

PSS and Protocol VIP: Like a Hand in a
Glove

Tom Fitzpatrick, Siemens EDA, Groton, MA, USA (tom.fitzpatrick@siemens.com)
Bob Oden, Siemens EDA, Raleigh, NC, USA (bob.oden@siemens.com)

Ahmed Abd-Allah, Siemens EDA, Cairo, Egypt (ahmed.abd-allah@siemens.com)
Billy Graham, Siemens EDA, Bangalore, India (prodduturi-vasantha.billy-graham@siemens.com)

Abstract— The Portable Test and Stimulus Standard (PSS) encourages verification engineers to focus on describing
test scenarios, without worrying about the underlying target environment on which the test will ultimately be run. By
describing the scenarios in terms of a randomizable schedule of actions, or behaviors that will execute, the test can easily
be retargeted to different implementations for different environments. Especially at the block- and subsystem-level, these
target environments will usually be UVM environments, often incorporating standard-protocol VIP components.

The ability to reuse a PSS test scenario across multiple environments, including using different VIP to execute the
same actions, is one of the main definitions of the “Portable” part of PSS. This paper will illustrate a PSS methodology to
define an abstract model that can be retargeted at different VIP components to allow the same scenario throughout your
development flow.

I. INTRODUCTION

The Portable Test and Stimulus Standard (PSS) from Accellera[1] defines an abstract modeling language to specify
critical verification intent and allow the generation of target-specific implementations of a set of correct-by-
construction scenarios, each of which includes the critical intent supplemented by additional behaviors to meet the
requirements of the critical intent. The declarative nature of a PSS description allows a concise model to be the basis
for a potentially large number of scenarios.

By definition, a PSS test defines a set of actions that represent the verification behaviors required to exercise
desired functionality of the DUT. These actions themselves can be defined at multiple levels of abstraction, from basic
bus read/write operations to higher-level actions, such as DMA transfers, message passing, or other behaviors.

A PSS test is composed of the following:
1. A set of actions that define the set of behaviors to be executed.
2. An activity that defines the critical actions and their relative scheduling constraints
3. Data flow requirements between actions
4. Additional data and scheduling constraints
5. The target-specific implementation(s) of each action

From these elements, a PSS tool can generate a target-specific implementation of the overall test scenario. To the

extent that the schedule and constraints are flexible enough to permit multiple scenarios to satisfy the specified
verification intent, a PSS tool can effectively create a constrained-random implementation of the desired scenario.
This scenario-level randomization makes it easier to create complex test scenarios from easy-to-describe tests. This
approach also provides the secondary benefit of allowing the block-level verification team to create a library of actions
that can be reused at the subsystem and system level.

When targeting a UVM environment, the PSS test scenario can be realized as a UVM virtual sequence that
implements the schedule of actions as defined in the activity in PSS, with each action being mapped to a target-specific
implementation of the desired functionality. As multiple blocks are assembled into a subsystem, a PSS model may be
created that schedules the actions defined for each sub-block into an activity that defines the subsystem-level test. If
this test is also targeted at a UVM environment, the resulting realization will be a subsystem-level UVM virtual
sequence that will still ultimately invoke the implementation of each action in the target environment, but it is much
easier to coordinate these behaviors across blocks and interfaces from the PSS model than to write UVM sequences
manually to try and create the desired scenarios.

II. TEST REALIZATION

To define exactly how a particular PSS action is implemented in the target system, PSS includes a procedural
interface that allows UVM tasks to be imported into the PSS model for the given action. The task will be called from

mailto:tom.fitzpatrick@siemens.com
mailto:bob.oden@siemens.com
mailto:ahmed.abd-allah@siemens.com
mailto:prodduturi-vasantha.billy-graham@siemens.com

the generated UVM virtual sequence and will ultimately result in a UVM transaction-level sequence being executed
on the appropriate agent/sequencer to implement the functionality.

When the DUT includes an interface that utilizes a standard protocol, such as AXI, the appropriate VIP component
will be included in the UVM test environment. Each VIP component will often include an application-programming
interface (API) that will abstract the execution of the transaction-level sequence to simplify the use model. The PSS
package that defines the imported functions is accompanied by a corresponding VIP-specific SystemVerilog package
that supplies the implementation of the imported function for the target environment. When generating code for a
SystemVerilog implementation, imported target functions are realized as tasks.

The separation in PSS between the abstract model and the realization layer is the key to portability in PSS. Since
the abstract scenario model focuses on the behaviors to be executed by the DUT, it is largely agnostic to the particular
protocol that may be used by the realization layer to implement the behaviors. Consider, for example, a simple DMA
transfer action. The abstract model would specify fields such as the source and destination addresses and the size of
the transfer, as well as the particular DMA channel to be used for the transfer. The implementation of the action would
require the DUT to be programmed by writing the source and destination addresses and the transfer size into particular
registers and then the channel-specific “start” bit would be written. The realization layer would call the design-specific
method to execute the necessary register operations to perform the desired operation. The judicious use of packages,
in both PSS and SystemVerilog, will allow the implementation of the register operations to be handled by the desired
VIP by delegating the abstract read/write operations from PSS to the specific VIP API. If a different variation of the
DUT used a different protocol, a different realization layer that provides the corresponding API calls for the new
protocol could be used without requiring any changes in the original abstract model, resulting in the exact same
scenario being executed in the new environment.

III. ILLUSTRATIVE EXAMPLE

Introducing the Design Example

Consider the simple design shown in Figure 1. The memory element includes data storage that can be directly
written to or read from, and a set of channel-specific registers to support DMA transfers of data chunks from one
address to another, as well as transferring data to or from the peripheral port. The peripheral element contains a FIFO
data buffer and a set of control registers to support transfering data to or from the memory port. Both RTL elements
support the same simple read/write protocol for communication on their control ports, and the data bus between them
follows a simple handshake protocol. The details of these interfaces are not important for the purposes of this paper.

The memory element includes four registers for each DMA channel:
• SRC: The base address of the data buffer to be transferred
• DST: The base address to which the data buffer is to be transferred
• SIZE: The size of the buffer to be transferred
• GO/DONE: The control register where the bit set determines if the transfer is memory-to-memory,

memory-to-peripheral, or peripheral-to-memory. Setting the bit starts the desired transfer and the bit clears
when the transfer is complete.

Similary, the peripheral element supports writing data to and reading data from the internal FIFO, and it also
includes two control registers:

• SIZE: The size of the buffer to be transferred to/from the memory
• GO/DONE: The control register to specify either memory-to-peripheral or peripheral-to-memory transfers.

The set/clear behavior is the same as for the memory

Figure 1: Memory/Peripheral Design with UVM Environment

Memory Peripheral

ctrl_agent ctrl_agent

ch0 ch1 ch2 ch3

data_agent

m_scbd p_scbd

The UVM Environment

In the UVM environment, each ctrl_agent supports transaction-level sequences to transfer data to/from the
connected design element. The passive data_agent monitor tracks the data transferred between the two devices
while the two scoreboard components serve as reference models to ensure that the data in the memory and peripheral
devices are correct. A typical UVM test would consist of a UVM virtual sequence that coordinates the execution of
agent-level transaction sequences to implement the desired scenario.

Suppose we want to test that we can read data out of the memory. To test that, we must first write data into the
memory. We can either do a “memory fill” operation to write the data into the memory from the cb_agent, or we
can load the data into the peripheral device and transfer it from the peripheral to the memory, or we could fill a memory
buffer, do a DMA transfer to a different location in the memory, and dump it from there, or any combination of these.
A basic set of such sequences is shown in Figure 2. Note that the m2p and p2m operations require both the memory
and peripheral components to execute concurrently because there is no intermediate storage between them. The data
produced by one component must be consumed concurrently by the other.

Figure 2: UVM Sequences to Model Scenarios

The UVM test writer would need to start at the top of this graph to consider the different ways to get data into the

memory to dump the data and check that it is correct. This can start by filling the memory or by loading the peripheral.
If we wish to keep the data local to the memory (such as in a block-level test that involves only the memory
component), we could follow the initial fill operation with either a memory-to-memory DMA transfer (m2m) or we
could do a copy operation (mcpy) where each memory word is read from the source address and written to the
destination address. We could then do a separate m2m operation to get the data to the address from which we want to
do the dump operation. Alternately, after the initial memory fill operation, we could choose to transfer the data over
to the peripheral (m2p), but then we need to transfer the data back to the memory (p2m) before we can dump the data
from the memory. The third scenario shown is to load the data originally into the peripheral, followed by the p2m
operation prior to the dump.

In addition to the UVM test writer having to conceive of these scenarios, each one requires the test writer to keep
track of the individual transactions to make sure that the ouput of one transaction is the input to the next. Even for this
relatively simple example, there could be a lot of details to keep track of to ensure that each scenario is correct.

The other thing the astute reader will notice is that each scenario described above is essentially a “directed-random”
test. The elements of each transfer, such as source, destination and size, could be randomized, but the overall scenario
is the same so that, even if the same test were run with different random seeds, the set of scenarios would be the same
albeit with different data characteristics of each transfer. In this case, there may also be some scenarios that use the
m2m operation while others use the mcpy operation, but each of those operations has the same type of inputs and

outputs so it’s not difficult to add an if statement in the scenario. It is much more difficult to randomize the entire
scenario in UVM.

The test writer could start with an if statement to begin the scenario with a memory fill or a peripheral load. It
rapidly becomes untenable to specify the follow-on transactions based on that choice, especially if there are more than
just two choices at any particular node. Trying to write a single UVM virtual sequence with the required nesting of
if or case statements is extraordinarily difficult.

Modeling the Tests in PSS

PSS makes this task much easier. A PSS model begins by defining the set of actions that must be supported, and
the data flow requirements for them. For the memory operations, the data communication will be modeled using a
PSS buffer data flow object, which is similar to a struct type in SystemVerilog. We then define the memory fill and
dump actions as outputting or inputting a buffer object of that type, respectively, as shown in Example 1. Similarly,
we can also define the m2m and mcpy actions that each input and output the corresponding buffer type.
struct cb_struct {
 rand bit [31:0] addr;
 rand bit [31:0] size; // number of bytes
}

buffer cb_mbuf : cb_struct {
 rand MemKindE kind; // RAM Type (DRAM or SRAM)
 rand bit[32] alignment; // Data alignment in the associated memory location
 constraint alignment >= 64;
}

action mem_fill {
 output cb_mbuf obuf;
 constraint c1 {obuf.size in [16..64];}
}

action mem_dump {
 input cb_mbuf ibuf;
}

action mem_xfer {
 input cb_mbuf ibuf;
 output cb_mbuf obuf;
 rand int in [0..4] chan;

 constraint c1 {obuf.size == ibuf.size;}
}

action mem_m2m : mem_xfer {
}

action mem_mcpy : mem_xfer {
}

Example 1: Simple Memory Actions and Buffer Type

In the example, we can see that we start with the struct element cb_struct, which defines the addr and size

fields, which will be common to other types that will be derived from cb_struct, such as cb_mbuf, which adds the
kind and alignment fields. The mem_m2m and mem_mcpy actions are both derived from the mem_xfer base action
type, and each inputs and outputs a cb_mbuf object, with the added constraint that the output and input buffers are
constrained to have the same value for size. At the abstract model level, these two actions are identical, but we create
two separate action types so that we can later add different realization layer implementations for each.

The PSS language was designed specifically to define stimulus scenarios, so the semantics include a number of
features that make it easier to create multiple scenarios from a single model. Perhaps the most useful of these features
is the concept of action inferencing. The semantic rules define that if an action inputs a buffer type, there must be
corresponding action that outputs a compatible buffer type. Further, if the model includes both a producer and a
consumer of the same type, then the output of the producer is automatically bound to the input of the consumer. If we
consider the scenarios illustrated in Figure 2, the implications for this are staggering.

To create a test in PSS, we can “begin with the end in mind”[2] by defining our PSS model simply to traverse the
mem_dump action, as in Example 2.
action pss_top {
 activity {
 repeat (3) {
 do mem_dump;
 }
 }
}

Example 2: Simple PSS Model to Create Multiple Scenarios

In this model, for each traversal of the mem_dump action, the PSS tool will need to infer an action that can provide

the input cb_mbuf object. If we consider just the memory operations, if the mem_fill action is inferred, then we’re
done because that action doesn’t require any additional input. However, if the mem_m2m or mem_mcpy actions are
inferred, then we’ll have to infer another action to supply its input buffer type, for which we are presented with the
choice of inferring one of the same three action types. Eventually, each scenario must start with mem_fill since that
is the only action that produces the correct buffer type without requiring an input. The user can limit the number of
inferences in the chain and can choose to add additional fields and constraints to the model to ensure that a minimum
number of operations is inferred.

At the subsystem level, where we test the combination of the memory and peripheral components, we can add a
few more details to the model to, for example, avoid the simple fill/dump scenario, as shown in Example 3.
action pss_top {
 activity {
 repeat (4) {
 select {
 do mem_p2m with {obuf == mdump.ibuf;};
 do mem_m2m with {obuf == mdump.ibuf;};
 }
 do mem_dump;
 }
 }
}

Example 3: PSS Model to Add Complexity

Although not shown, a similar set of actions is defined for the peripheral, including the m2p and p2m actions, which
share a data flow object type with the (not shown) m2p and p2m in the memory. If the solver chooses a p2m action to
supply the buffer input to mem_dump, then the complementary p2m action must also be inferred to be traversed
concurrently by the peripheral, and then that action will require the inferencing of either load or m2p to supply its

input as shown in Figure 2. The same model can obviously produce many more scenarios than just those shown in
Figure 2.

Thus, with a very simple test specification, a PSS tool can automatically create a large number of scenarios, and
manage the data connections and scheduling constraints between them. Notice that we have not yet considered how
any of these actions will be implemented in the target environment. PSS was developed specifically with this
distinction in mind, to allow this level of abstraction in the model itself. To specify the implementation of a scenario,
we use the PSS Realization Layer

Realizing PSS Tests

The implementation of a PSS action is defined via one or more exec blocks in the PSS model. For our basic UVM
example, we declare a package that extends the action declarations to define the design-specific API, as shown in
Example 4.
package cb_pss_mem_uvm_pkg {
 extend component mem_c {
 extend action mem_fill {
 exec body {
 do_fill(comp.id, obuf.addr, obuf.size);
 }
 }
...
 }
}

Example 4: PSS Package to Provide Realization

By importing this package into the PSS model, the exec body block provides the implementation of the
mem_fill action as a call to the do_fill task from the resulting UVM virtual sequence. An example
implementation of this method would be a SystemVerilog task that can be called from the UVM virtual sequence, as
shown in Example 5.
virtual task automatic do_fill(logic[ADDR_WIDTH-1:0] dest, int size);
 ...
endtask

Example 5: PSS Package to Provide Realization

The dest argument specifies the target address of where the data will be written, and size specifies how many
words should be written.
Note that we could use an alternate package to provide a different realization of the mem_fill action, as shown in
Example 6
package other_pss_mem_uvm_pkg {
 extend component mem_c {
 extend action mem_fill {
 exec body {
 fill_mem(comp.id, obuf.addr, obuf.size);
 }
 }
...
 }
}

Example 6: PSS Package to Provide Realization

By using the other_pss_mem_uvm_pkg package, we provide a different exec body definition for the action.
This has no impact on the abstract model in Example 3, but allows a different method to be called to realize the
action.
The key to reuse is to separate the design-specific functionality from the protocol-specific functionality. In a general
sense, the implementation of the do_fill method will use a loop of write method calls to load the memory
class qps_usr_mem_api extends uvm_sequence;
 ...
 pss_if_api_base ctrl_if_api;
 virtual task automatic do_fill(input int fid, bit[31:0] dest, size);
 bit[31:0] data;

 for(int i=0; i < size*4; i=i+4) begin
 bit stat = std::randomize(data);
 ctrl_if_api.write32(dest+i, data);
 end
 endtask

Example 7: UVM Implementation of do_fill method

The qps_usr_mem_api sequence defines the protocol-independent implementation of the design-specific
do_fill method in terms of the pss_if_api_base sequence that defines the register-level API supported by
PSS.
package pss_if_resources_pkg;
 import uvm_pkg::*;

 class pss_if_api_base;
 virtual task write32(input longint unsigned address, bit [31:0] data);
 endtask
 ...
 virtual task read32(input longint unsigned address,
 output bit [31:0] data);
 endtask
 ...
 endclass
endpackage

Example 8: UVM Implementation of pss_if_api_base sequence

We next need to provide the protocol-specific implementation of these methods. We do this by declaring another
sequence that is derived from the pss_if_api_base sequence that implements the register-level API in terms of
the specific agent we are using to communicate with the memory component.
class uvmf_ctrl_bus_pss_if_api extends pss_if_api_base;
 ctrl_bus_api_sequence seq;
 virtual task write32(input longint unsigned address, bit [31:0] data);
 seq.write32(address, data);
 endtask
 virtual task read32(input longint unsigned address,
 output bit [31:0] data);
 seq.read32(address, data);
 endtask

 ...
endclass

Example 9: UVM Implementation of pss_if_api_base sequence

The ctrl_bus_api_sequence sequence is part of the ctrl_bus interface package. It uses the standard UVM
mechanism to execute the desired transaction on the agent-level sequencer:
class ctrl_bus_api_sequence extends ctrl_bus_sequence_base ;
 `uvm_object_utils(ctrl_bus_api_sequence)

 task write32(input bit[31:0] a, d, bit[3:0]strb=4'b1111);
 req.memtrans = writew;
 req.addr = a;
 req.data = d;
 req.strb = strb;
 this.start(m_sequencer);
 endtask
 ...
endclass

Example 10: UVM Implementation of pss_if_api_base sequence

With this infrastructure in place, the user simply declares a top-level virtual sequence that implements the PSS
actions as calls to the imported methods used in the exec blocks for the relevant actions. As shown in Example 11,
this requires assigning the protocol-specific ctrl_if_api sequence in the top-level sequence to the corresponding
API sequence in the design-specific qps_usr_mem_api sequence prior to running the scenario in the body() task.

class qps_usr_mem_periph_mapping_sequence extends qps_gen_sequence;
 `uvm_object_utils(qps_usr_mem_periph_mapping_sequence)

 uvmf_ctrl_bus_pss_if_api mem_ctrl_if_api;
 uvmf_ctrl_bus_pss_if_api periph_ctrl_if_api;

 qps_usr_mem_periph_api qps_usr_mem_periph_api;

 virtual task do_fill(bit[31:0] dest, size);
 qps_usr_mem_periph_api.do_cb_fill(dest,size);
 endtask

...
 task body();
 qps_usr_cbmem_periph_api.map_interface_sequences(
 .mem_ctrl_if_api(mem_ctrl_if_api),
 .periph_ctrl_if_api(periph_ctrl_if_api));

 super.body();
 endtask
endclass

Example 11: Mapping the Protocol-specific API Sequence to the Design-specific API methods

The recommended structure is to create a qps_usr_<env>_api sequence to represent the environment-specific
interfaces required. As an example, the qps_usr_mem_periph_api sequence in Example 11 may represent a
subsystem-level environment that is composed from separate block-level environments for each of the memory
and peripheral components. Each of these block-level environments would have its own ctrl_if_api
sequence to drive the relevant ctrl_agent instance.
class qps_usr_mem_periph_api extends uvm_sequence;
 ...
 pss_if_api_base mem_ctrl_if_api;
 pss_if_api_base periph_ctrl_if_api;

 qps_usr_mem_api qps_usr_mem_api;
 qps_usr_periph_api qps_usr_periph_api;

 function map_interface_sequences(input pss_if_api_base mem_ctrl_if_api,
 input pss_if_api_base periph_ctrl_if_api);
 this.mem_ctrl_if_api = mem_ctrl_if_api;
 this.periph_ctrl_if_api = periph_ctrl_if_api;
 qps_usr_mem_api.map_interface_sequences(.ctrl_if_api(mem_ctrl_if_api));
 qps_usr_periph_api.map_interface_sequences(.ctrl_if_api(periph_ctrl_if_api));
 endfunction
 ...
endclass

class qps_usr_mem_api extends uvm_sequence;
 ...
 pss_if_api_base ctrl_if_api;
 pss_if_api_base data_if_api;

 function void map_interface_sequences(input pss_if_api_base ctrl_if_api,
 input pss_if_api_base data_if_api=null);
 this.ctrl_if_api = ctrl_if_api;
 this.data_if_api = data_if_api;
 endfunction
 ...
endclass

Example 11: Mapping the Protocol-specific API Sequence to the Design-specific API methods

The Questa Portable Stimulus tool generates the qps_gen_sequence that executes the schedule of the solved PSS
activity and calls the appropriate methods as defined in the qps_usr_mem_periph_mapping_seq sequence
according to that schedule. The resulting sequence hierarchy is shown in Figure 3.

Figure 3: UVM Sequence Hierarchy

The generated qps_gen_sequence extends from a base virtual sequence that includes pointers to any sequencers
or other test bench infrastructure required to implement the scenario. Figure 3 shows additional detail to show how
the above scheme can be deployed to support multiple instances of the ctrl_agent as shown in Figure 1.

IV. USING STANDARD PROTOCOL VIP

In any SoC (System-on-Chip) verification flow, integrating standard protocol VIPs such as AXI, APB, or PCIe is
crucial for ensuring compliance and reliability in data communication. In this section, we explore how to incorporate
AXI VIP into a UVM environment using PSS and how to update the realization layer to map the abstract PSS
actions to the AXI VIP API.

Updating UVM environment to add AXI VIP

In the verification environment, the AXI Responder is an RTL design that is connected directly to the AXI Manager
VIP instantiated in the top_hdl module. The UVM environment leverages the AXI Manager VIP to generate
transactions (reads and writes) to interact with the AXI Responder RTL.

Figure 4. VIP-centric UVM Environment

The AXI Manager VIP is configured to generate the necessary AXI transactions, including configuration

parameters such as address width, data width, and burst capabilities. Notice that the ctrl_agent components are
now passive UVM components, serving as monitors of the traffic between the memory or peripheral blocks and

ctrl_bus_pkg

mem_periph_sequences_pkg

qps_usr_mem_periph_api_pkg

qps_usr_mem_per_mapping_seq

do_fill()
do_ldmem()
do_mem_p2m()
do_periph_p2m()

qps_gen_sequence

mem_per_bench_sequence_base

qps_usr_mem_periph_api

map_intf_seqs()
do_fill()
do_ctrl_p2m()
do_data_p2m()

uvmf_sequence_base

mem_ctrl_if_api
periph_ctrl_if_api

qps_usr_mem_periph_api

uvmf_ctrl_bus_pss_if_api
read32()
write32()
setup()
do_transfer()

ctrl_bus_api_sequence

read32()
write32()
do_transfer()

seq

ctrl_bus_sequence_base

get_response()
body()

mem_ctrl_api_seq
periph_ctrl_api_seq

qps_usr_periph_api_pkg

qps_usr_periph_api

map_intf_seqs()
do_ldmem()
do_ctrl_p2m()
do_data_p2m()

ctrl_if_api
data_if_api

pss_if_resources_pkg

pss_if_api_base

read32()
write32()
do_transfer()qps_usr_mem_api_pkg

qps_usr_mem_api

map_intf_seqs()
do_fill()
do_ctrl_p2m()
do_data_p2m()

ctrl_if_api
data_if_api

mem_ctrl_if_api
periph_ctrl_if_api

qps_usr_mem_api
qps_usr_periph_api

axi_rtl axi_rtl

axi_manager axi_manager

Memory Peripheral

ch0 ch1 ch2 ch3

ctrl_agent ctrl_agent

data_agent

m_scbd p_scbd

the connected axi_rtl block, allowing the same scoreboards to be used for error checking. The testbench focuses
on configuring and driving transactions through the Manager VIP, ensuring a streamlined connection to the DUT.
mem_if_i #(
 .ADDR_WIDTH (ADDR_WIDTH),
 .DATA_WIDTH (WDATA_WIDTH)
) m_if[2] (
 .clk (CLK),
 .rst (ARESETn)
);

mem_periph_if_i #(
 .DATA_WIDTH(WDATA_WIDTH),
 .DMA_CHANNELS(DMA_CHANNELS)
) mp_if(CLK);

genvar i;
generate for(i=0;i<2;i=i+1) begin: gscope
 vip_axi4_hdl_manager #(
 .ADDR_WIDTH (ADDR_WIDTH),
 .ID_R_WIDTH (ID_R_WIDTH),
 .ID_W_WIDTH (ID_W_WIDTH),
 .RDATA_WIDTH (RDATA_WIDTH),
 ...
) manager_bfm (
 .ACLK (CLK),
 .ARESETn (ARESETn),
 .AWID (AWID [i]),
 .AWADDR (AWADDR [i]),
 .AWLEN (AWLEN [i]),
 ...
);

 axi_slave_responder #(
 .C_S_AXI_ADDR_WIDTH (ADDR_WIDTH),
 .C_S_AXI_ID_WIDTH (ID_W_WIDTH),
 .C_S_AXI_DATA_WIDTH (WDATA_WIDTH),
) axi_slave (
 .S_AXI_ACLK (CLK),
 .S_AXI_ARESETN (ARESETn),
 .S_AXI_AWID (AWID [i]),
 .S_AXI_AWADDR (AWADDR [i]),
 .S_AXI_AWLEN (AWLEN [i]),
 .m_if (m_if[i])
);
 end

endgenerate

cbmem #(
 .ADDR_WIDTH (ADDR_WIDTH),
 .DATA_WIDTH (WDATA_WIDTH)
) memory (
 .m_if (m_if[0]),
 .mp_if(mp_if)
);

periph #(
 .ADDR_WIDTH (ADDR_WIDTH),
 .DATA_WIDTH (WDATA_WIDTH)
) periph (
 .m_if (m_if[1]),
 .mp_if(mp_if)
);

Example 12. Connecting VIP to the DUT

The two instantiated AXI VIP instances provide a pre-defined API, including high-level methods like write32

and read32. These methods abstract away the low-level protocol details, allowing the verification engineer to perform
basic read and write operations over the AXI interface. To deploy the AXI VIP, we simply update the sequence
hierarchy as shown in Figure 5.

Figure 5: UVM AXI/AXI Sequence Hierarchy

The mechanism is similar to that shown in Figure 3 with the exception that the mem_ctrl_if_api and

periph_ctrl_if_api sequence instances in qps_usr_subsys_mapping_seq are now of type
avery_axi_pss_if_api, which is a PSS-specific extension to the existing avery_axi4_api sequence which is
part of the Siemens Avery family of VIP components.

Since each action in the PSS model calls the same imported method, which calls the same method of the
mapping_seq sequence, there is no need for the PSS model to change. However, since the AXI protocol supports

aaxi_uvm_base_pkgcaw_axi4_m_pkg

avery_axi4_api

read32()
write32()
read_bytes()
write_bytes()
setup()

aaxi_uvm_seq_base

read32()
write32()
read_bytes()
write_bytes()
body()

avery_axi_pss_if_api

read32()
write32()
read_bytes()
write_bytes()
setup()

seq

subsys_sequences_pkg

qps_usr_subsys_mapping_seq

do_fill()
do_ldmem()
do_mem_p2m()
do_periph_p2m()

qps_gen_sequence

subsys_bench_sequence_base

uvmf_sequence_base

mem_ctrl_if_api
periph_ctrl_if_api

qps_usr_subsystem_api

pss_if_resources_pkg

pss_if_api_base

read32()
write32()
read_bytes()
write_bytes()
do_transfer()

qps_usr_subsys_api_pkg

qps_usr_subsystem_api

map_intf_seqs()
do_fill()
do_ctrl_p2m()
do_data_p2m()

cbmem_ctrl_if_api
periph_ctrl_if_api
qps_usr_cbmem_api

qps_usr_periph_api

qps_usr_mem_api_pkg

qps_usr_mem_api

map_intf_seqs()
do_fill()
do_ctrl_p2m()
do_data_p2m()

ctrl_if_api
data_if_api

qps_usr_periph_api_pkg

qps_usr_periph_api

map_intf_seqs()
do_ldmem()
do_ctrl_p2m()
do_data_p2m()

ctrl_if_api
data_if_api

burst read and write operations, we now have the option of implementing operations like do_fill as a single AXI
burst write operation instead of a loop of individual word writes as we did previously.

Changing Peripheral AXI to APB

As verification environments evolve, it is common to transition between bus protocols depending on system
requirements. In SoC designs, the AXI protocol, known for its high throughput and burst capability, is often used for
high-speed memory transactions. However, when interacting with low-latency peripherals, the Advanced Peripheral
Bus (APB) protocol is more appropriate due to its simpler design and lower power consumption. This section discusses
how the PSS model can be adapted to accommodate the change from an AXI-based peripheral to an APB-based
peripheral, focusing on the necessary updates to both the UVM environment and the PSS realization layer.

In this updated environment, the Design Under Test (DUT) now contains a peripheral that interfaces over the APB
protocol instead of AXI.

Figure 6. Mixed AXI/APB UVM Environment

APB transactions are simple and occur in a single clock cycle, making the protocol ideal for low-latency peripheral

control. The APB protocol reduces overhead by eliminating the complex handshaking and burst mechanisms present
in AXI, simplifying both hardware and software. With the transition from AXI VIP to APB VIP, the PSS model
remains unchanged at the abstract level. However, specific adjustments are needed in the realization layer to map
abstract actions such as periph_ldmem and periph_p2m to the APB-specific transactions, which are simpler and
more direct compared to AXI.

Since we’ve already set up our sequence hierarchy to be reusable, we just need to modify our
qps_usr_mapping_seq sequence to account for the new type of the periph_ctrl_if_api sequence type.
class qps_usr_subsystem_mapping_sequence extends qps_gen_sequence;
 `uvm_object_utils(qps_usr_subsystem_mapping_sequence)
 avery_axi_pss_if_api mem_ctrl_if_api;
 avery_apb_pss_if_api periph_ctrl_if_api;
 qps_usr_subsystem_api qps_usr_subsystem_api;

 task body();
 qps_usr_subsystem_api.map_interface_sequences(
 .mem_ctrl_if_api(mem_ctrl_if_api),
 .periph_ctrl_if_api(periph_ctrl_if_api));
 ...
 super.body();
 endtask

axi_rtl apb_rtl

axi_manager apb_manager

Memory Peripheral

ch0 ch1 ch2 ch3

ctrl_agent ctrl_agent

data_agent

m_scbd p_scbd

endclass
Example 13: Mapping the Protocol-specific API Sequences to Different Design-specific API methods

The sequence class hierarchy for this new structure is shown in Figure 7

Figure 7: AXI/APB VIP Sequence Hierarchy

The changes required in the UVM environment are subtle, but each unique UVM environment requires a different
qps_usr_mapping_seq sequence. This will result in a lot of copying and pasting across sequences in order to
replicate the same scenario for multiple environments. With PSS, as we have shown, the stimulus model stays
constant and we rely on the tool, such as Questa Portable Stimulus, to generate the environment-specific
implementation of the scenario.

V. ADDING EXECUTORS

In PSS, an executor acts as a link between a test's abstract model and its implementation on software or hardware
platforms. Executors manage the platform-specific details, ensuring that the test operates correctly on the targeted
platform by interpreting PSS actions and resource constraints. They simplify the mapping of test scenarios into the
appropriate platform-specific instructions, ensuring compatibility with the intended hardware resources.

Defining executor traits

To bind test scenarios to specific hardware, PSS defines executor traits, which describe the functional and
behavioral characteristics of the executor. These traits are essential to ensure that the right executor is matched to the
test scenario, enabling accurate interaction with the hardware.

In PSS, executors are equipped with two primary traits: device and protocol. These traits help to describe how the
executor interacts with various system elements, including peripherals, memory, and communication buses.

The device field represents the type of hardware resource that an executor is designed to interact with. This field
can specify various devices, including system memory, I/O peripherals, or specialized hardware components. For
example, an executor handling memory accesses could be responsible for managing transactions between the CPU
and the system's mem or periph.
 component my_axi_executor_group_c : executor_group_c<vip_trait_s> {
 my_axi_executor_c axi_exec[2];

 exec init_down {
 axi_exec[0].trait.id = 0;
 axi_exec[0].trait.device = mem;
 add_executor(axi_exec[0]);

caw_apb_m_pkg

avery_apb_pss_if_api
read32()
write32()
setup()

seq

avery_apb_api
read32()
write32()
setup()

aapb_uvm_base_pkg

aapb_seq_brdg_base
read32()
write32()
body()

aaxi_uvm_base_pkgcaw_axi4_m_pkg

avery_axi4_api

read32()
write32()
read_bytes()
write_bytes()
setup()

aaxi_uvm_seq_base

read32()
write32()
read_bytes()
write_bytes()
body()

avery_axi_pss_if_api

read32()
write32()
read_bytes()
write_bytes()
setup()

seq

subsys_sequences_pkg

qps_usr_subsys_mapping_seq

do_fill()
do_ldmem()
do_mem_p2m()
do_periph_p2m()

pss_if_resources_pkg

pss_if_api_base

read32()
write32()
read_bytes()
write_bytes()
do_transfer()

qps_usr_subsys_api_pkg

qps_usr_subsystem_api

map_intf_seqs()
do_fill()
do_ctrl_p2m()
do_data_p2m()

cbmem_ctrl_if_api
periph_ctrl_if_api
qps_usr_cbmem_api

qps_usr_periph_api

qps_gen_sequence

subsys_bench_sequence_base

uvmf_sequence_base

qps_usr_mem_api_pkg

qps_usr_mem_api

map_intf_seqs()
do_fill()
do_ctrl_p2m()
do_data_p2m()

ctrl_if_api
data_if_api

qps_usr_periph_api_pkg

qps_usr_periph_api

map_intf_seqs()
do_ldmem()
do_ctrl_p2m()
do_data_p2m()

ctrl_if_api
data_if_api

mem_ctrl_if_api
periph_ctrl_if_api

qps_usr_subsystem_api

 axi_exec[1].trait.id = 1;
 axi_exec[1].trait.device = periph;
 add_executor(axi_exec[1]);
 }
 }

The protocol field defines the communication interface used by the executor. As discused earlier, AXI (Advanced

eXtensible Interface) is commonly used for high-speed memory accesses, while APB (Advanced Peripheral Bus) is
used for peripheral communications that require lower bandwidth.
component vip_group_c : executor _group_c<vip_trait_s> {
 pcie_executor_c pcie_exec;
 axi_executor_c axi_exec;
 ahb_executor_c abh_exec;

 exec Init_down {
 pcie_exec.trait.vip = PCIE;
 add_executor(pcie_exec);
 axi_exec.trait.vip = AXI;
 add_executor(axi_exec);
 ahb_exec.trait.vip = AHB;
 add_executor(abh_exec);
 }
}

Matching executor traits

PSS uses the traits defined for executors to match the appropriate executor to a test scenario. Matching executor
traits is all about ensuring that the right executor is chosen for a specific test scenario based on the needs of the test.
Executors are like specialized workers who handle different tasks (like reading from memory or interacting with
peripherals), and each one has specific characteristics, or "traits," that define what they can do. These traits include
things like the type of device the executor works with (e.g., memory or peripheral) and the communication protocol it
uses (e.g., AXI or APB).

When you run a test, PSS automatically selects the best executor by comparing the traits required by the test with
the traits of the available executors. For example, if a test scenario needs to access memory using the AXI protocol,
the system will look for an executor that matches those exact traits i.e., device="memory" and protocol="AXI". This
is done using the executor claim, which is like a request that specifies exactly what kind of executor the test needs.

Using executor-specific APIs

In PSS, executors are equipped with their own APIs (Application Programming Interfaces), which allow them to
perform specific tasks related to hardware, like reading from memory or communicating with peripherals. These APIs
act as higher-level tools that executors use to interact with the system's hardware resources, simplifying complex
operations.

In many verification setups, a transactor, or testbench agent, is connected to an I/O interface of the system. This
transactor exposes transactional APIs or higher-level stimulus sequences to the PSS tool. These APIs allow the test

scenarios to communicate with the system in a more abstract way, letting the PSS model focus on higher-level intent
while the executor handles the lower-level details.

For example, a memory executor might have an API that includes read() and write() functions to handle memory
operations. A peripheral executor might expose APIs for sending and receiving data to an I/O device or over
communication buses like UART or SPI.

By using these executor-specific APIs, PSS helps simplify complex hardware interactions, making the testing
process more efficient and flexible across different platforms. Follow-on work to this paper will involve extending the
methodology to utilize executors to further improve the reusability of models that may require protocol- or device-
specific knowledge as a key part of the test scenario.

VI. AUTOMATING UVM ENVIRONMENT CREATION

UVM Framework

The Universal Verification Methodology Framework (UVMF)[3] is an advanced and comprehensive toolset that
extends the capabilities of UVM, the Universal Verification Methodology. UVMF provides a robust and structured
approach to verification, offering a wide range of pre-built components, utilities, and testbenches that accelerate and
simplify the verification process.

With UVMF's flexible architecture, verification engineers can effortlessly customize and integrate the components
into their specific projects, fostering reusability and scalability. By leveraging UVMF, verification teams can
significantly reduce development time, enhance collaboration, and ensure the delivery of high-quality, error-free
semiconductor designs to meet the ever-increasing demands of the electronics industry. Although not required to
implement the methodology described in this paper, the examples were generated using UVMF.

Generating UVM Environment

Using a code generator to create the UVM environment and test bench is an efficient way to create code that is
correct by construction. The abstract characterization input to UVMF’s code generator provides the information
required to generate environments and test benches that are PSS ready. This information includes the number of
agents within an environment and the type of each agent. The active agents in a simulation are also identified. This
allows the code generator to identify which agents could be used in the definition of user API’s.

Integrating PSS

The code generator in UVMF automatically integrates PSS into the test bench by generating the required
infrastructure. This infrastructure includes class methods the user will complete. These classes are automatically
included in the environment package and test package.

The first step of integration is to generate the PSS sequence and the package which contains the user defined API’s
using Questa’s Portable Stimulus Compiler, qpsc. When executing qpsc, the user identifies the top-level virtual
sequence which will be the base class for the generated qps_gen_sequence. This provides qps_gen_sequence
with access to test bench level resources needed by PSS to initiate interface level operations on the DUT. The
resources include sequencer handles and other resources needed by the VIP sequence to provide read and write
operations on the DUT interface. The package generated by qpsc contains an api class with methdos defined by the
user in the PSS code. The user completes the method bodies in the second step of integration. The packages and
sequences created by the PSS tool are automatically integrated into the test bench by the tool flow as outlined above.

The above mapping allows selection of the PSS test using a simple factory override.

class qps_test extends test_top;
 `uvm_component_utils(qps_test);

 function new(string name = "qps_test", uvm_component parent = null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 // The factory override below replaces the default top-level sequence

 // with the QPS sequence
 subsystem_bench_sequence_base::type_id::set_type_override(
 qps_usr_subsystem_mapping_sequence::get_type()
);
 super.build_phase(phase);
 endfunction

endclass

CONCLUSION

PSS encourages verification engineers to focus on defining test scenarios at an abstract level, without initially
worrying about the underlying target environment in which the scenario will ultimately be realized. This scenario-
based approach is complementary to the UVM, which provides a protocol-specific transaction-level abstraction layer
to isolate the what of a particular operation from the how of the pin-level communication to the DUT. The PSS abstract
model raises this level of abstraction to actions that define behaviors to be exercised, each of which may consist of
multiple transaction-level operations. Reuse can be maximized with PSS by combining the powerful features of the
language with the judicious of packages in both PSS and SystemVerilog to allow the abstract verification scenarios to
be targeted to a variety of standard protocol-specific VIP components, such as the Avery VIP library from Siemens
EDA.

In this paper, we have shown how to organize a PSS model and accompanying UVM sequences to use different
realizations of actions depending on the desired protocol to be used in the target environment. Whether the target is a
non-standard user-defined block-level protocol, or a more complex UVM environment including multiple different
VIP components, the same scenarios can be realized throughout.

When it comes to creating the UVM target environment, the use of a UVM code generator like UVMF can greatly
accelerate test bench creation. Its integration with Questa Portable Stimulus Compiler, qpsc, accelerates integration
of a PSS model into a UVM test bench. Using Avery VIP from Siemens EDA can also accelerate the required mapping
from generic interface writes and reads to specific interface level operations for DUT stimulus.

REFERENCES

[1] Accellera, “Portable Test and Stimulus Standard Version 3.0”,
https://www.accellera.org/images/downloads/standards/pss/Portable_Test_Stimulus_Standard_v3.0.pdf

[2] Covey, Stephen R. The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change. New York: Free Press, 1989.
[3] https://verificationacademy.com/topics/uvm-universal-verification-methodology/uvmf/uvm-framework/

https://www.accellera.org/images/downloads/standards/pss/Portable_Test_Stimulus_Standard_v3.0.pdf
https://verificationacademy.com/topics/uvm-universal-verification-methodology/uvmf/uvm-framework/

