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Introduction



Transactors and Transactor based verification

• Transactor : Bridge between Testbench 
and DUT.
• Software side : Provides high-level APIs to 

perform protocol-specific actions

• Hardware side : Matches the specific 
protocol interface with DUT at cycle/bit 
level

• User level Testbenches model the actual 
traffic across the protocol Interface 
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USB Host DUT Verification Environment with 
Device Testbench
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• Requirement to model traffic for a 
USB devices requires a complex User 
Testbench
• USB -- 21 Device classes (mapped to 

different devices)
• Multiple Sub classes

• Multiple protocols Variants

• Multiple Person months of efforts, 
prone to user errors 

• How can we reduce this 
complexity? 



USB Host DUT Verification with real USB 
device
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What if, Real USB device acts as a Device Testbench?



USB subsystem (in a real world)
Interaction with  Linux and libusb



USB Subsystem in Linux framework
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• USB device is inserted

• Kernel detects USB device.
• Invokes USB Host driver

• USB Host driver creates data 
structures for user drivers.

• User drivers are created.



‘libusb’ and its role 
• Libusb 

• Open source Linux library in C

• Encapsulates OS and USB protocol 
complexities.

• Provides simpler APIs 

• APIs allow device driver development in 
user space.



Enabling USB Host DUT verification with 
Actual USB devices in a Virtual framework 



Device Virtual Solution

• Leverage Linux Kernel framework and libusb to connect Device BFM SW with 
real USB device.

• Create Virtual Adapter (User mode driver) that connects Device BFM SW with 
real USB device.  

• Developed virtual solution for mass storage class, Bulk-Only-Transport protocol.

 Kernel

  space

libusb

Virtual 

Adapter

( User 

space)   

Dev

BFM     

   SW

USB   

device

Device Virtual Solution

SV
      OR 
   SV-DPI

C /C++C /C++

Dev

 BFMSV-DPI
    OR 
  C/C++



Virtual Adapter (User mode driver)
• Create a virtual adapter (user mode driver ) in C.

• Include libusb header.
#include "libusb.h"

• Initialize libusb.
libusb_context* m_libusbContext;

ret = libusb_init(m_libusbContext);

• Connect libusb with USB device.
m_libusbHandle = 

libusb_open_device_with_vid_pid(m_libus

bContext, VENDORID, PRODUCTID);

• Interact with USB device using libusb APIs.
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Host DUT verification in Virtual framework

Simulation Verification Env
DUT and BFM are on Host PC

Emulation Verification Env
DUT and BFM are on Emulator
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Host DUT - Device Virtual Solution Integration
• Host DUT – Device Virtual Solution DUT BFM integration

• Integrate and Compile USB Host DUT and Device Transactor on hardware 

platform.

• Testbench Environment Settings 
• Connect a real USB mass storage device in Host PC. 

• Obtain USB real device vendor ID and product ID. Use lsusb

• Device Virtual Solution Testbench
• Use Device Virtual Solution APIs to connect with real USB device

• Run a Device Virtual Solution service loop



Host DUT – Device Virtual Solution at Runtime

• Wait for link up between Host DUT and Device transactor hardware.

• Host DUT enumerates real USB device.

• Device Virtual Solution responds to control transfers through USB real device.

• Host DUT initiates' traffic.

• Device Virtual Solution responds to transfers through USB real device.



Verification Results and Future Work
• Verification Results

• HS (SS) mass storage device were inserted insert in Host PC

• Host transactor enumerated Device virtual solution

• Ran few SCSI commands, transferred and received 1800K (3600K) bytes from HS(SS) 
device.

• At HS speed, In simulation, test completed in 5702 seconds, while in emulation it 
completed in 23 seconds (248 times faster)

• At SS speed, In simulation, test completed in 4815 seconds, while in emulation it 
completed in 16 seconds (301 times faster)

• Future Work
• Enhance solution for other device classes, sub classes, and protocols.

• Similar approach can be taken for other protocols, and timers.



Questions



Questions

• Thanks for joining!

• Feedback and offline questions:
• suchiir@synopsys.com

• amits@synopsys.com
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