
Leverage Real USB Device For USB Host DUT
Verification

Suchir Gupta, Amit Sharma, Synopsys Inc

Agenda

• Introduction – Transactor based Verification for Protocol Interfaces

• USB Subsystem (in real world)

• Enabling USB Host DUT Verification in Virtual Framework

• Questions

Introduction

Transactors and Transactor based verification

• Transactor : Bridge between Testbench
and DUT.
• Software side : Provides high-level APIs to

perform protocol-specific actions

• Hardware side : Matches the specific
protocol interface with DUT at cycle/bit
level

• User level Testbenches model the actual
traffic across the protocol Interface

Testbench

User

Environnent

PC HW Platform

DUTTransactor

SW-HW
Communication

Infrastructure

USB Host DUT Verification Environment with
Device Testbench

Host PC

Dev

Testbench

Dev

BFM

SW

Host

DUT

Dev

 BFM

HW Platform

• Requirement to model traffic for a
USB devices requires a complex User
Testbench
• USB -- 21 Device classes (mapped to

different devices)
• Multiple Sub classes

• Multiple protocols Variants

• Multiple Person months of efforts,
prone to user errors

• How can we reduce this
complexity?

USB Host DUT Verification with real USB
device

Real
USB

Device

Host

DUT

Dev

BFM

HW

Platform

Host PC

Dev

Virtual

Soln

Dev

BFM

SW

Host

DUT

Dev

BFM

HW

Platform

Host PC

Dev

TB

Dev

BFM

SW

What if, Real USB device acts as a Device Testbench?

USB subsystem (in a real world)
Interaction with Linux and libusb

USB Subsystem in Linux framework

USB kernel driver

VFS

User space

Kernel space

User application

Host PC HardwareUSB
Device

• USB device is inserted

• Kernel detects USB device.
• Invokes USB Host driver

• USB Host driver creates data
structures for user drivers.

• User drivers are created.

‘libusb’ and its role
• Libusb

• Open source Linux library in C

• Encapsulates OS and USB protocol
complexities.

• Provides simpler APIs

• APIs allow device driver development in
user space.

Enabling USB Host DUT verification with
Actual USB devices in a Virtual framework

Device Virtual Solution

• Leverage Linux Kernel framework and libusb to connect Device BFM SW with
real USB device.

• Create Virtual Adapter (User mode driver) that connects Device BFM SW with
real USB device.

• Developed virtual solution for mass storage class, Bulk-Only-Transport protocol.

 Kernel

 space

libusb

Virtual

Adapter

(User

space)

Dev

BFM

 SW

USB

device

Device Virtual Solution

SV
 OR
 SV-DPI

C /C++C /C++

Dev

 BFMSV-DPI
 OR
 C/C++

Virtual Adapter (User mode driver)
• Create a virtual adapter (user mode driver) in C.

• Include libusb header.
#include "libusb.h"

• Initialize libusb.
libusb_context* m_libusbContext;

ret = libusb_init(m_libusbContext);

• Connect libusb with USB device.
m_libusbHandle =

libusb_open_device_with_vid_pid(m_libus

bContext, VENDORID, PRODUCTID);

• Interact with USB device using libusb APIs.

 Kernel

 space

libusb

Virtual

Adapter

(User

space)

Dev

BFM

 SW

C /C++C /C++ SV-DPI
 OR
 C/C++

Host DUT verification in Virtual framework

Simulation Verification Env
DUT and BFM are on Host PC

Emulation Verification Env
DUT and BFM are on Emulator

USB

Stick

Host PC

Device

Virtual

Solution

 SV-DPI Dev

BFM

Host

DUT

Host PC

 SV

USB

Stick

Host PC

 SV-DPI Dev

BFM

Host

DUT

Emulator

 SV

Device

Virtual

Solution

Host DUT - Device Virtual Solution Integration
• Host DUT – Device Virtual Solution DUT BFM integration

• Integrate and Compile USB Host DUT and Device Transactor on hardware

platform.

• Testbench Environment Settings
• Connect a real USB mass storage device in Host PC.

• Obtain USB real device vendor ID and product ID. Use lsusb

• Device Virtual Solution Testbench
• Use Device Virtual Solution APIs to connect with real USB device

• Run a Device Virtual Solution service loop

Host DUT – Device Virtual Solution at Runtime

• Wait for link up between Host DUT and Device transactor hardware.

• Host DUT enumerates real USB device.

• Device Virtual Solution responds to control transfers through USB real device.

• Host DUT initiates' traffic.

• Device Virtual Solution responds to transfers through USB real device.

Verification Results and Future Work
• Verification Results

• HS (SS) mass storage device were inserted insert in Host PC

• Host transactor enumerated Device virtual solution

• Ran few SCSI commands, transferred and received 1800K (3600K) bytes from HS(SS)
device.

• At HS speed, In simulation, test completed in 5702 seconds, while in emulation it
completed in 23 seconds (248 times faster)

• At SS speed, In simulation, test completed in 4815 seconds, while in emulation it
completed in 16 seconds (301 times faster)

• Future Work
• Enhance solution for other device classes, sub classes, and protocols.

• Similar approach can be taken for other protocols, and timers.

Questions

Questions

• Thanks for joining!

• Feedback and offline questions:
• suchiir@synopsys.com

• amits@synopsys.com

	Slide 1: Leverage Real USB Device For USB Host DUT Verification
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Transactors and Transactor based verification
	Slide 5: USB Host DUT Verification Environment with Device Testbench
	Slide 6: USB Host DUT Verification with real USB device
	Slide 7: USB subsystem (in a real world)
	Slide 8: USB Subsystem in Linux framework
	Slide 9: ‘libusb’ and its role
	Slide 10: Enabling USB Host DUT verification with Actual USB devices in a Virtual framework
	Slide 11: Device Virtual Solution
	Slide 12: Virtual Adapter (User mode driver)
	Slide 13: Host DUT verification in Virtual framework
	Slide 14: Host DUT - Device Virtual Solution Integration
	Slide 15: Host DUT – Device Virtual Solution at Runtime
	Slide 16: Verification Results and Future Work
	Slide 17: Questions
	Slide 18: Questions

