
Sequencer Containers - A Unified and
Simple Technique to Execute Both
Sequences and Virtual Sequences

 Clifford E. Cummings Mark Glasser
 Paradigm Works, Inc. Independent Consultant
 cliff.cummings@paradigm-works.com glassermark@gmail.com

Abstract - Virtual sequences are an essential element in UVM testbenches. They enable a test to exercise and manage
multiple DUT interfaces. UVM, however, is silent on how virtual sequences obtain sequencer handles representing those
multiple interfaces. A normal (non-virtual) sequence is bound to a sequencer when launched. A virtual sequence is not
bound to any sequencer, and a way must be found to access sequencers. Traditionally, testbenches are constructed with so-
called virtual sequencers, which are used not as sequencers per se but as containers for sequencer handles. p_sequencer
handles are used to access the sequencer handles in virtual sequences.

This paper will explain why virtual sequencers are not the best way to manage sequencer handles in a virtual sequence.
We will also discuss an alternative testbench architecture that does not require virtual sequencers but instead uses
sequencer containers and the resource database. We will share detailed descriptions of two implementations of sequencer
containers: the sequencer pool (sqr_pool) and the sequencer aggregator (sqr_aggregator). We will demonstrate how
these containers alleviate the issues associated with virtual sequencers through code examples.

I. Virtual Sequences and Virtual Sequencers

UVM sequences are launched with the start() task, which takes a single optional argument. When a valid

sequencer handle is supplied as the argument, the sequence and sequencer are bound together. A sequence bound to a
sequencer via the argument to start() is called a normal sequence. When the argument is omitted or null is
provided, the launched sequence is called a virtual sequence. Each virtual sequence is responsible for obtaining
sequencer handles to coordinate generated sequence items across multiple sequencers.

UVM is silent on how virtual sequences obtain sequencer handles to transmit sequence items. Traditionally,

verification engineers use so-called virtual sequencers. A virtual sequencer is a sequencer that serves as a container
for sequencer handles and does not function as a typical sequencer. It does not transmit sequence items from sequences
to a driver. A virtual sequencer does none of the usual actions that sequencers are designed to do. Its only purpose is
to hold sequencer handles.

Virtual sequencers are sequencers derived from the base class uvm_sequencer_base. The members of the virtual

sequencer (derived) class include sequencer handles, which must be populated sometime between the construction of
the virtual sequencer and the point where sequences access them.

The virtual sequencer was invented when OVM was widely used before UVM was developed. In the context of
OVM, virtual sequencers made sense because the resource database did not exist.

II. Existing Virtual Sequence Techniques: Advantages & Disadvantages

Multiple commonly used virtual sequence techniques exist, each with its own advantages and disadvantages. Below

are three of those techniques.

A. init_vseq Technique
The init_vseq method is the technique shown on Siemens Verification Academy and is probalby the least useful

of the techniques described in this paper.

This technique places an init_vseq method in a test_base class, which requires full, hard-coded paths to the
physical locations of the subsequencers in the testbench. As the testbench grows and changes shape, the paths must
be properly updated for each new variation of the tests. The init_vseq technique requires the test to call the
init_vseq() method with a virtual sequence argument to assign the subsequencer handles in each virtual sequence
before the virtual sequences are started.

In general, hard-coded paths are very problematic in large and evolving UVM testbench environments, and a source

of null-reference bugs when the paths are not correctly updated.

B. Virtual Sequencer Technique
Each virtual sequence needs access to the physical subsequencer handles. The virtual sequencer (vsequencer)

method relies on a top-level environment to copy those handles into one or more vsequencer components, so each
new environment is responsible for copying the appropriate subsequencer handles into the correct vsequencer. One
advantage of this technique is that the tests are not required to maintain hard-coded paths to the subsequencers. Instead,
each test must start virtual sequences on the appropriate vsequencer, and from there, the vseq_base can retrieve
the handles from the vsequencer component for use by the virtual sequences.

Typically, one thinks of storing component handles in a config object. Still, since sequences must be started on a

sequencer, which in this case is the vsequencer, the vsequencer acts as the config object to hold the subsequencer
handles, and each environment is responsible for setting those handles for use by the tests.

After a virtual sequence is started on a vsequencer, the vseq_base class has access to the stored subsequencer

handles and can retrieve the subsequencer handles in the vseq_base, and each extended virtual sequence is able to
inherit the properly set subsequencer handles to coordinate sequence activity across the desired subsequencers.

Using the vsequencer method, the only hard-coded path is referenced when the test starts a virtual sequence on a

path to one or more vsequencers. This can change in an evolving UVM testbench environment, but the changes are
infrequent, and there would only be a few paths to a few different vsequencers at most. This technique is not nearly
as problematic as the init_vseq technique described above in Section II-A.

When this paper was published, the vsequencer technique was probably the most commonly implemented virtual

sequence method used by verification engineers.

C. uvm_resource_db Technique
The vsequencer method is the most commonly used virtual sequence technique because engineers have been

operating under the false assumption that subsequencer handles could not be stored as resources and then directly
retrieved inside a sequence. This false assumption results from engineers commonly attempting to use the
uvm_config_db API to access resources. Generally speaking, sequences cannot use the uvm_config_db API
because the uvm_config_db commands require retrieval to a component, and a sequence is not a component. Some
engineers have figured out that if they hack the uvm_config_db command by passing a component handle of null,
it will bypass the component-checking mechanism of the uvm_config_db commands. Then they can use an inst-
name string to retrieve a resource, even into a sequence. But this is a needless hack!

The uvm_resource_db API can use simple strings to store and retrieve resources, and the strings are not required

to be component paths, as required when using the uvm_config_db API. The strings are just passwords that are
stored with resources that must be matched when retrieving the corresponding resources.

This means each agent can store a subsequencer handle at a string location in the resource name table, and then the

vseq_base can retrieve the resource from the name table at that string location.

This technique does not require a separate init_vseq method to set subsequencer handles, nor does it require a

vsequencer config-object-like component to store the subsequencer handles for later retrieval. The subsequencer
handles are stored as resources and retrieved by the vseq_base class using the simple uvm_resource_db API. The
disadvantage of this technique is that a large number of virtual sequences might use the uvm_resource_db

commands to retireve subsequencer handles from the resource pool and the uvm_resource_db (and
uvm_config_db) API commands are rather expensive simulation-performance commands to use.

III. Hierarchical Independence

A vital issue with virtual sequencers is that they are not hierarchically independent. Hierarchical independence is

the idea that a component in the UVM component hierarchy does not have to “know” where it is instantiated. It may
be instantiated anywhere in the hierarchy, and its function is independent of its hierarchical location. Virtual
sequencers are locked into a particular location in the hierarchy. They are populated with sequencer handles by
referring to their hierarchical location. Any component, such as a virtual sequencer, that requires a partial or complete
component path is not hierarchically independent.

To use a virtual sequencer, a virtual sequence must have access to the full hierarchical path of the virtual sequencer.

Attempting to relocate the virtual sequencer requires changing pathnames to the virtual sequencer called by virtual
sequences. This becomes a maintenance headache. The problem becomes more acute with larger testbenches with
many interfaces.

A related issue is the debugging of virtual sequences. The sequencer handles contained in a virtual sequencer must

be populated somewhere outside the virtual sequencer. Often, but not always, the handles are assigned in the top-level
test. Sometimes, they are populated by an agent or an environment. A debugging challenge is finding where a
particular sequencer handle is populated. The virtual sequencer does not tell you how and where the sequencer handles
obtained their values.

Although less noticeable, block-level sequences are typically started on a full hierarchical path to a single sequencer

and are, therefore, not hierarchically independent. Again, any repositioning of the block-level sequencer in a UVM
testbench might require the sequences to be started on an existing sequencer with a new hierarchical path.

IV. Sequence Fundamentals

Sequences must be started on a sequencer. Sequences cannot be started on a driver, nor can they be started on an

agent, nor can they be started on a config object, nor can they be started on any other component. Any attempt to start
a sequence on anything other than a sequencer will cause a run-time failure.

Sequences are started on a specified sequencer. Each sequence has a built-in start() method to initiate the

communication between the sequence and the specified sequencer. When a sequence is started, the m_sequencer
handle defined in the sequence, which was inherited from the uvm_sequence base class, is set to point to the
sequencer with which the sequence is communicating. Sequences conduct handshaking actions with the sequencer
where it is running, and those handshaking activities are only available on a sequencer.

When coordinating multiple sequences across multiple sequencers, each sequence must have a handle to the

sequencer where it is running. The sequencers themselves have different handles or must have different names.

Traditional approaches to executing sequences have required the test (or a higher-level sequence) to call

seq.start(path_to_sequencer). If the testbench hierarchy changes, the test must also update the
path_to_sequencer handles referenced in the start() method. Fixed path handles are a source of bugs as a
testbench evolves or as a next-generation testbench is patterned after an earlier-generation testbench.

What if the sequencer handle could update itself as the testbench structure evolves? What if multiple uniquely

named sequencer handles that are referenced by virtual sequences could similarly be automatically updated? These
are the ideas that are satisfied by using sequencer containers described in this paper.

V. Sequencer Containers

The role of a virtual sequencer is to serve as a container for sequencer handles. Since sequences must be started on

a sequencer, the sequencer container replaces a config object, frequently used to store many other pieces of information
required by a UVM testbench. As a virtual sequencer, none of the sequencer machinery is used, so there is no need to

use a sequencer as a container for sequencer handles. Instead, we can use a data structure designed as a container for
sequencer handles.

Our alternative is to use a data structure called a sequencer container. At its essence, a sequencer container is an

associative array that maps names to sequencer handles. Virtual sequences can obtain a handle from the sequencer
container and then search for sequencer handles stored in the container.

Sequencer containers can be implemented in a variety of ways. Various implementations provide different means for
accessing the container and other ways to store and retrieve sequencer handles. In this paper, we will detail two
different implementations. The first, called the sequencer pool, is a singleton data structure derived from the
uvm_pool class for storing and retrieving sequencer handles. The second, the sequencer aggregator, uses multiple
associative arrays and provides various means to locate sequencer handles singly or in groups.

VI. Sequencer Pool

The sequencer pool (sqr_pool) is a sequencer container. The sqr_pool is a singleton class derived from

uvm_pool. It maps string names to sequencer handles, much like UVM RAL uses register names to map to register
addresses. The sqr_pool example used in this paper is shown in Figure 1. The sqr_pool has methods for adding
new sequencer handles and retrieving them by name. As a singleton, it is available to all virtual sequences.

This section will look closely at the organization and implementation of the sequencer pool.

A. uvm_pool Class

The sqr_pool class is derived from uvm_pool. Uvm_pool, part of the UVM class library, provides much of the

functionality required for sqr_pool. The uvm_pool base class defines an associative array with type KEY int and
type T uvm_void.

class uvm_pool #(type KEY=int, T=uvm_void) extends uvm_object;
 const static string type_name = "uvm_pool";
 typedef uvm_pool #(KEY,T) this_type;

 static protected this_type m_global_pool;
 protected T pool[KEY];

Extending the uvm_pool to the user-defined sqr_pool with type KEY string and type T

uvm_sequencer_base easily creates most of the functionality required by the sqr_pool.

class sqr_pool #(type T=uvm_sequencer_base) extends uvm_pool #(string,T);

Figure 1 - Virtual sequence example - uses handles retrieved from the sequencer pool singleton.

B. sqr_pool Class Example

The virtual sequence example shown in Figure 1 is the same example shown on Siemens' Verification Academy

[1], which allows the reader to compare the sequencer container techniques described in this paper to the init_vseq
technique shown on Verification Academy. The init_vseq technique was briefly described in Section II-A..

This virtual sequence example has a top-level environment (env_top) with two sub-environments (env1 and

env2). Sub-environment env1 has two agents (a_agent and c_agent) and sub-environment env2 has two more
agents (b_agent and a second copy of the a_agent).

Each agent has a get_sequencer() method that returns the a handle to the enclosed sequencer.

function uvm_sequencer_base get_sequencer();
 return sqr;
endfunction

Each UVM testbench typically has one environment, but more complex UVM testbenches might have a top-level

environment and multiple lower-level environments often referred to as sub-environments. The example shown in
Figure 1 has a top-level environment (env_top) and two sub-environments (env1 and env2).

Each sub-environment has a get_sequencers() method that calls the get_sequencer() method from each

enclosed agent and stores the returned sequencer handles into uniquely named locations in the sqr_pool, described
in the next section. Note that sqrs is a handle to the singleton sqr_pool.

function void get_sequencers();
 sqrs.add("A1", a_agnt.get_sequencer());
 sqrs.add("C", c_agnt.get_sequencer());
endfunction

Any sequencer, virtual and normal, can now locate sequencer handles in the sqr_pool.

The full sub-environment, agent, sqr_pool, test_base and virtual sequence classes are shown in Appendix I at

the end of this paper.

C. sqr_pool Class

The sequencer pool stores all the sequencer handles used by a single or multi-level environment in an associative

array named pool, which is accessed by KEYs of type string.

protected T pool[KEY]; // Inherited from uvm_pool – this is the sqr_pool

The sqr_pool overrides two virtual methods defined in the uvm_pool base class:

(1) get() – The uvm_pool implementation returns the item with the given key or creates a new item at that key location
if one does not exist. The sqr_pool implementation returns the sequencer handle stored at the key=string
location or issues a `uvm_fatal message. If no sequencer handle is stored at the referenced KEY location, nothing
good is going to happen when a test tries to start a sequence on a null handle.

virtual function T get (string key);
 if (pool.exists(key)) return pool[key];
 else begin
 //print(); // Uncomment for verbose printing
 dump();
 `uvm_fatal("SQR_POOL",
 $sformatf("No pool entry exists for sqr name %s", key))
 end
endfunction

(2) add() – The uvm_pool version adds the given item to the associative array at the given KEY location and quietly

overwrites the contents if there is already an item at that location. The sqr_pool version adds the sequencer handle to
the associative array at the given KEY location or issues a `uvm_fatal message that a "Duplicate name_table entry:
name %s" exists if there is a sequencer handle is already stored at that location, thus avoiding a previous handle being
silently overridden. The sqr_pool should not allow a new assignment to overwrite the existing contents of the same
location since that will delete the existing sequencer handle, which is probably used elsewhere by a virtual sequence.
Again, nothing good will happen if a sequencer handle is silently lost.

virtual function void add(string key, uvm_sequencer_base item);
 if(key != "") begin
 if(pool.exists(key))
 `uvm_fatal("SQR_POOL",
 $sformatf("Duplicate name_table entry: name %s", key))
 pool[key] = item;
 end
endfunction

The do_print() method is inherited from the uvm_pool base class. The print() method, which calls the
do_print method, gives a detailed component-structure report with more information and verbosity than is typically
required when debugging a UVM testbench. The print() method is still available but not particularly useful due to
its complexity and verbosity.

The sqr_pool class adds a simplified and abbreviated printout of all sequencer handles stored in the sequencer

pool by calling a dump() method.

virtual function void dump();
 $display("\n--- SEQUENCER POOL ENTRIES -------");
 foreach(pool[name]) begin
 uvm_sequencer_base sqr = pool[name];
 $write ("%10s : ", name);
 $display("%s", sqr.get_full_name());
 end
 $display("--- END SEQUENCER POOL -------\n");
endfunction

If the simulation is run with +UVM_VERBOSITY=HIGH or higher, the test_base calls the dump() method in the

start_of_simulation_phase() and again in the final_phase(). Sequencer containers should be fully
populated by the end of the end_of_elaboration_phase(). Calling dump() in the
start_of_simulation_phase() helps debug sequencer handle issues if the simulation aborts during the run
phases, and calling dump() in the final_phase() easily allows an engineer to view the sequencer handles that were
stored and available during the simulation, at the end of the simulation in the transcript window.

function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 if (uvm_report_enabled(UVM_HIGH)) begin
 this.print();
 factory.print();
 sqrs.dump();
 end
endfunction

function void final_phase(uvm_phase phase);
 if (uvm_report_enabled(UVM_HIGH)) sqrs.dump();
endfunction

D. Sequencer Pool and the Top-Level Test

When doing simple block-level testing using a single agent, The test starts a sequence on a named sequencer

referenced from the sqr_pool. The test is not required to know the full path to the sequencer where the sequence is
started. The block-level test simply references the sequencer by a user-friendly name that was assigned when the
sequencer handle was stored in the sqr_pool.

When coordinating and executing virtual sequences across multiple sequencers, the test simply coordinates

sequences across multiple uniquely named sequencers whose handles were stored with unique names in the
sqr_pool. There is no need to retrieve the sequencer handles from a virtual sequencer, or from stored resources using
the uvm_resource_db API.

The capability to consistently access sequencer handles the same way in both simple sequences or more complex

virtual sequences has been the missing link to achieving a simple and unified sequence execution strategy. A globally
accessible sequencer pool addresses this missing unified strategy.

E. Uniquely Named Sequencers Limitation?

The sqr_pool technique described in this section requires all the testbench sequencers to have unique string-names

in the sqr_pool. The virtual sequencer technique (described in Section II-B) allows sequencer handles in different
virtual sequencers to have the same name. This means the virtual sequencer technique runs the risk that virtual
sequences can be started on the correct sequencer-type but on the wrong virtual sequencer. This might be a difficult
bug to identify.

Because time spent debugging is often the #1 factor that puts a project behind schedule [8], a coding style that helps

avoid bugs in the first place is a worthwhile investment. Taking time to plan to ensure sequencers have unique names
is not a burdensome requirement. Executing sequences on the uniquely named sequencers helps to avoid running the
wrong virtual sequence on a name that might exist in more than one virtual sequencer.

Since each agent, even agents in arrays, will add its sequencer handle onto the pool, the handles will be unique. One

must ensure all names associated with sequencer handles, including those in arrays are unique and easy to understand.

VII. Sequencer Aggregator

The sequencer aggregator is another sequencer container. Like the sequencer pool, it is a container for sequencer
handles. It performs the same function as a sequencer pool – supplying sequencer handles to virtual sequences.
Whereas the sequencer pool is a singleton, the sequencer aggregator is not, allowing for multiple aggregators. Multiple
aggregators allow for separate sequencer domains and namespaces. The sequencer aggregator is called an aggregator
because it enables you to aggregate a collection of sequencer handles as the testbench is created (during the UVM
build and connect phases).

This section will look closely at the organization and implementation of a sequencer aggregator.

The sequencer aggregator has multiple associative arrays containing sequencer handles. These are the core of the

sequencer aggregator.

class sqr_aggregator;
 typedef uvm_sequencer_base sqr_q_t[$];

 local uvm_sequencer_base sqr_table[string];
 local uvm_sequencer_base name_table[string];
 local sqr_q_t kind_table[string];

The methods in the sqr_aggregator class can add a new sequencer handle to the aggregator or find a handle or

group of handles based on some criteria. Each of the three associative arrays, sqr_table, name_table, and
kind_table, stores sequencer handles differently so that they can be retrieved differently. The name_table array
lets you look up sequencers by an assigned name. The kind_table enables you to look up groups of sequencers by
assigned kind. Finally, sqr_table lets you look up sequencers by full path name. All three tables are updated when
a new sequencer handle is added to an aggregator.

 function void add(uvm_sequencer_base sqr, string name, string kind);
 sqr_q_t q;
 string path = sqr.get_full_name();
 sqr_table[path] = sqr;

 if(kind != "") begin
 if(kind_table.exists(kind))
 q = kind_table[kind];
 q.push_back(sqr);
 kind_table[kind] = q;
 end

 if(name != "") begin
 if(name_table.exists(name))
 `uvm_info("SQR_AGGREGATOR",
 $sformatf("replacing sequencer with name %s", name),
 UVM_NONE)
 name_table[name] = sqr;
 end

 endfunction

The sequencer aggregator has four lookup functions, one for each of the different ways to look up sequencers. First,
lookup_path()finds a sequencer by full path name. Finding sequencer handles by full path name is not used often
because requiring full path names breaks hierarchical independence. However, it can be helpful in some situations and
for debugging.

 function uvm_sequencer_base lookup_path(string path);
 if(sqr_table.exists(path))
 return sqr_table[path];
 else
 return null;
 endfunction

The lookup_name() function returns a single sequencer handle whose name matches a name string. The name is
assigned when the sequencer handle is added to the aggregator.

 function uvm_sequencer_base lookup_name(string name);
 if(name_table.exists(name))
 return name_table[name];
 else
 return null;
 endfunction

lookup_path() finds a group of zero or more sequencer handles whose path name matches a regular expression.
The UVM regular expression facility, which supports posix regular expression syntax, compiles and matches regular
expressions. lookup_path() is useful when you want to locate a collection of sequencers whose hierarchical location
is subordinate to a particular component, for example.

 function sqr_q_t lookup_path_regex(string regex);
 sqr_q_t q = {};
 foreach(sqr_table[path]) begin
 if(uvm_re_match(regex, path))
 q.push_back(sqr_table[path]);
 end
 return q;
 endfunction

Finally, lookup_kind() lets you find a group of zero or more sequencer handles that all have the same kind string.
A “kind” is an arbitrary string assigned to sequencer handles as they are added to the aggregator.

 function sqr_q_t lookup_kind(string kind);
 return kind_table[kind];
 endfunction

For completeness and debugging our implementation of a sequencer aggregator contains a dump() function. This
function prints out all the internal tables.

 function void dump();

 $display("--- SEQUENCER AGGREGATOR ---");

 $display(" by name:");
 foreach(name_table[name]) begin
 uvm_sequencer_base sqr = name_table[name];
 $display(" %s -> %s", name, sqr.get_full_name());
 end

 $display(" by kind:");
 foreach(kind_table[kind]) begin
 sqr_q_t q = kind_table[kind];
 $display(" %s", kind);
 foreach(q[i]) begin
 uvm_sequencer_base sqr = q[i];

 $display(" %s", sqr.get_full_name());
 end
 end

 $display(" by path:");
 foreach(sqr_table[path]) begin
 $display(" %s", path);
 end

 endfunction

A working example of the sequencer aggregator is in [6] and more discussion can be found in [5].

VIII. Sequencer Aggregator and Pool Comparison

The sequencer pool and sequence aggregator store sequencer handles so virtual sequences can retrieve and use them.
The choice of which to use is application-dependent.

The sequencer pool is a singleton that does not have to be explicitly instantiated. It is immediately available to any
object, specifically virtual sequences. It has only one associative array for storing and retrieving sequencer handles,
providing a single namespace for sequencer names. All sequencer handles put into the sequencer pool must have
unique names. In large-scale systems, there is a risk of a sequencer name clash. A fatal error occurs if a second (or
later) sequencer handle is inserted with the same name. This prevents the sequencer pool from silently handing back
the wrong sequencer handle. Also, the sequencer pool provides no means to look up groups of sequencer handles by
regular expression or kind.

Sequencer aggregators, on the other hand, must be explicitly instantiated and stored in the resource database so that
virtual sequences can find them. However, they provide more ways to locate sequencer handles, such as in groups.

The sequencer pool is helpful for a wide variety of applications, particularly in testbenches for relatively simple
devices with a small number of interfaces (and thus a small number of sequencers). Sequencer aggregators are best
with large-scale designs and multiple interface domains.

Sequencer aggregators are frequently required in an environment where multiple block-level testbenches are built
independently and later integrated to form subsystem-level and system-level testbenches. In that development style,
it is important to maintain hierarchical independence and ensure no accidental name clashes.

IX. Sequencers Interfaces

UVM agents have three primary interfaces, as shown in Figure 2: the virtual interface (vif) for connecting signals

on the DUT, an analysis port for sending sampled transactions to analysis components, and a sequencer interface for
initiating transactions. The virtual interface and the analysis port are visible on the boundary of the agent. However,
the sequencer interface is not. “Reaching in” (a hierarchical reference) is often used by using dot notation to access
the agent’s class member that holds the sequencer handle. Allowing unrestricted access to the sequencer handle is
awkward and can be dangerous.

Figure 2- Sequencer interfaces block diagram

We propose a convention where each agent has a get_sequencer() method, which returns a handle to the
sequencer contained in the agent, and each environment has a get_sequencers() method to populate the sequencer
container with sequencers in the contained agents. The convention requires that the get_sequencer() method be
called for each agent in the environment and adds the sequencer handles into the sequencer container(s). An agent's
get_sequencer() method simply returns the agent’s sequencer handle.

class agent extends uvm_component;

 local uvm_sequencer#(transaction) sqr;

 function uvm_sequencer_base get_sequencer();
 return sqr;
 endfunction

An environment that contains multiple agents populates the sequencer aggregator or sequencer pool with all the

sequencer handles from the agents. Note that get_sequencers() takes a reference argument to a sequencer aggregator.
It is important that a ref argument is used. This prevents unnecessary copying. If you are using a sequencer pool, the
argument is not necessary. Instead, the sequencers are added to the singleton pool.

 class multi_if_env extends uvm_component;

 local agent agt_A;
 local agent agt_B;

 function void get_sequencers(ref sqr_aggregator sqrs);
 sqrs.add(agt_A.get_sequencer(), "control", "control");
 sqrs.add(agt_B.get_sequencer(), "data", "data");
 endfunction

endclass

In the example above, two sequencers are added to the aggregator, one from agent A and one from agent B. Each
agent’s get_sequencer function is called to retrieve its sequencer handles to be passed to the aggregator’s add()
function.

The top-level test creates a new aggregator and populates it with sequencer handles by calling get_sequencers()
in the environment. It does this in the end_of_elaboration phase after the entire component hierarchy is in place.

class test extends uvm_component;

 local sqr_aggregator sqrs;

 function void end_of_elaboration_phase(uvm_phase phase);
 sqrs = new();
 env.get_sequencers(sqrs);
 uvm_resource_db#(sqr_aggregator)::set("*", "sqrs", sqrs, this);
 endfunction

endclass

The test also puts the sequencer aggregator into the resource database to make it available to virtual sequences. This
step is not necessary if you are using the sequencer pool.

X. Verification IP (VIP) Considerations

Verification Intellectual Property (VIP) is often purchased or leased from third party vendors and frequently

complicates advanced verification environments. The problem is that user sequences must know the full path names
to the sequencers inside of the VIP agents to execute user-defined sequences on the VIP agent-sequencers. Once the
path name to the VIP agent-sequencer is known, engineers frequently store that handle inside of a virtual sequencer,
which is one reason that the vsequencer technique shown in Section II-B, is so commonly used by verification
engineers.

It is recommended that VIP vendors add the simple get_sequencer() method to the VIP-agent. Users could then

call the agent-get_sequencer() method from the user's environment code to store the VIP sequencer handle in the
sqr_pool for easy reference from the user's block-level sequences and multi-block level virtual sequences.

XI. Summary

Virtual sequencers were invented as a use model for virtual sequences in OVM. They are not hierarchically

independent, thwarting reuse and testbench composition. They are also notoriously difficult to debug.

Sequencer containers mitigate the issues of using virtual sequencers. Sequencer containers hold a collection of

sequencer handles mapped to string names. Virtual sequences can retrieve sequencer handles from sequencer
containers instead of virtual sequencers.

We have outlined two implementations of sequencer containers, the sequencer aggregator (sqr_aggregator) and

sequencer pool (sqr_pool). The singleton sequencer pool is a good choice when it is feasible to assign unique names
to all sequencer handles in a testbench. Sequencer aggregators are a good choice when there are multiple interface
domains or testbenches block-level testbenches will be composed into subsystem and system-level testbenches.

Treating sequencers as agent interfaces, like virtual interfaces and analysis ports, enables testbench composition

and protects agents from improper access.

The use model for sequencer containers requires that sequencer handles can be located in agents and environments

in a uniform manner. We proposed that all agents include a get_sequencer() method to return its sequencer and
each environment includes a get_sequencers() method to populate the sequencer containers from its contained
agents and sub-environments.

Finally, the sequencer container techniques described in this paper simplify and unify how sequences and virtual

sequences can be run in a UVM testbench.

XII. References

[1] Verification Academy Video – Layered Sequences (init_vseq() technique). Video available at
https://verificationacademy.com/topics/uvm-universal-verification-methodology/advanced-uvm/layered-sequences/

[2] Clifford E. Cummings, Heath Chambers, Mark Glasser, "The	Untapped	Power	of	UVM	Resources	and	Why	Engineers	Should	Use	
the	uvm_resource_db,"	DVCon 2023 Proceedings, also available at
www.sunburst-design.com/papers/CummingsDVCon2023_uvm_resource_db_API.pdf.

[3] Clifford E. Cummings, Janick Bergeron, "Using	UVM	Virtual	Sequencers	&	Virtual	 Sequences," DVCon 2016 Proceedings, also
available at www.sunburst-design.com/papers/CummingsDVCon2016_Vsequencers.pdf

[4] "IEEE Standard For Universal Verification Methodology Language Reference Manual," IEEE Computer Society, IEEE, New York,
NY, IEEE Std 1800.2™-2023

[5] Mark Glasser, Next	Level	Testbenches	–	Design	Patterns	In	SystemVerilog	and	UVM, July 2024, ISBN: 9798332981975, Published
by Mark Glasser.

[6] Mark Glasser, Topaz Library, https://github.com/mxg/topaz
[7] Universal Verification Methodology (UVM) 1.2 Class Reference - June 2014
[8] Wilson Research Group and Siemens EDA study references –	(See	Debug	Time	pie	charts):

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/11/06/part-4-the-2022-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/12/02/part-4-the-2020-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2019/01/29/part-8-the-2018-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2019/01/02/part-4-the-2018-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2016/10/04/part-8-the-2016-wilson-research-group-functional-
verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2016/08/29/part-3-the-2016-wilson-research-group-functional-
verification-study/

	

Appendix I. Required Sequencer Pool Coding Modifications

What coding requirements are needed to implement the sequencer pool technique? This Appendix shows the simple

modifications required to implement the sequencer pool technique.

A. Agent classes

Each agent declares handles for the sequencer and the driver. It is common to use the handle names sqr and drv.

In the sequencer pool technique, the agent adds the get_sequencer() method to return the handle for the declared
sqr sequencer. The get_sequencer() method requires three very simple lines of code shown on Lines 26-28 in
Example 1. The full agent class code is shown below.

 1 class agent extends uvm_component;
 2 `uvm_component_utils(a_agent)
 3
 4 a_driver drv;
 5 a_sequencer sqr;
 6
 7 function new(string name, uvm_component parent);
 8 super.new(name, parent);
 9 endfunction
10
11 function void build_phase(uvm_phase phase);
12 drv = a_driver::type_id::create("drv", this);
13 sqr = a_sequencer::type_id::create("sqr", this);
14 endfunction
15
16 function void connect_phase(uvm_phase phase);
17 drv.seq_item_port.connect(sqr.seq_item_export);
18 endfunction
19
20 //---
21 // The environment will ask this agent for the sqr handle to
22 // be stored in the sqr_pool.
23 // The environment will call this agnt.get_sequencer() method to retrieve
24 // the sequncer handle from this agent.
25 //---
26 function uvm_sequencer_base get_sequencer();
27 return sqr;
28 endfunction
29 endclass

Example 1 - sqr_pool: agent-example code

B. Envrionment classes

Each environment that builds the agent(s) includes its own get_sequencers() method that calls the individual

get_sequencer() method from each agent and stores the retrieved sequencer handle into a uniquely named string
location in the sqr_pool singleton. The full env1 class code is shown in Example 2.

Lines 21-24 - defines the get_sequencers() method used in the

env1 block diagram as shown in Figure 3.

It is the job of the environment(s) to do the naming of the subsequencer

handles used by the sqr_pool. The agent(s), including any VIP agents,
are not required to know what name was used to store the agent-sequencer
handles.

 1 class env1 extends uvm_env;
 2 `uvm_component_utils(env1)
 3
 4 a_agent a_agnt;
 5 c_agent c_agnt;
 6
 7 function new(string name, uvm_component parent);
 8 super.new(name, parent);
 9 endfunction
10
11 function void build_phase(uvm_phase phase);
12 a_agnt = a_agent::type_id::create("a_agnt", this);
13 c_agnt = c_agent::type_id::create("c_agnt", this);
14 endfunction
15
16 //---
17 // Wait for build_phase to complete then grab and store the subsequencer
18 // handles into uniquely named locations in the singleton sqr_pool
19 //---
20
21 function void get_sequencers();
22 sqrs.add("A1", a_agnt.get_sequencer());
23 sqrs.add("C", c_agnt.get_sequencer());
24 endfunction
25 //---
26 // In this example, the stored sqr handles are:
27 //---
28 // A1 Sequencer handle is stored in the sqr_pool:
29 // pool["A1"] : "e_top.e1.a_agnt.sqr"
30 //---
31 // C Sequencer handle is stored in the sqr_pool:
32 // pool["C"] : "e_top.e1.c_agnt.sqr"
33 //---
34 endclass

Example 2 - sqr_pool: environment-example code

C. sqr_pool class

The sqr_pool class is a singleton extended from the functionality already defined in the uvm_pool base class, as

described in Section VI-A. The full sqr_pool class code is shown in Example 3.

Line 1 – parameterizes the sqr_pool class to the uvm_sequencer_base type, which is extended from the

uvm_pool base class parameterized with the KEY type string.

Line 3 – declare this_type to be a sqr_pool parameterized to the uvm_sequencer_base type.

Line 5 – declare the protected singleton m_global_pool handle.

Figure 3 - env1 block diagram

Line 6 – shows that the protected pool with access type string is inherited from the uvm_pool base class.
pool is the singleton sqr_pool handle referenced inside of this class.

Lines 9-11 – implements a protected new() constructor, which restricts calling this constructor from anything,

but the static get_global_pool() method that starts on line 13.

Lines 13-17 – defines the static get_global_pool() method. The first time this method is called, the

m_global_pool handle will be null so this static method will call the protected new() constructor to create
the one and only (singleton) copy of the m_global_pool handle. On line 16, the first time and every other time this
static method is called, it will return the singleton handle to the sqr_pool (m_global_pool).

Lines 19-24 – defines a static get_global(KEY) method to return the m_global_pool handle of a string-

parameterized version of the sqr_pool. This appears to be a safety function in case multiple sqr_pools of types
other than string happen to exist in the UVM testbench. We do not have other sqr_pool#(KEY) types in this
example so this method is not called from this example and might never be called from a UVM testbench.

Lines 26-34 – defines the virtual get() method to retrieve a user-named sequencer handle from the sqr_pool.

If a handle by this name does not exist in the sqr_pool, the simulation will report a missing `uvm_fatal message
and abort the simulation.

Lines 36-43 – defines the virtual add() method to push a uniquely user-named sequencer handle onto the

sqr_pool. If there is already a sequencer by this name in the sqr_pool, the simulation will report a duplicate
`uvm_fatal message and abort the simulation.

Lines 45-53 – defines the virtual dump() function to print out in a simple format, the current contents of the

sqr_pool showing the unique user-defined sequencer names and the actual path to each sequencer.

 1 class sqr_pool #(type T=uvm_sequencer_base) extends uvm_pool #(string,T);
 2
 3 typedef sqr_pool #(T) this_type;
 4
 5 static protected this_type m_global_pool;
 6 // protected T pool[KEY]; // Inherited – this is the sqr_pool
 7
 8 // Should the new-constructor be protected to make sqr_pool a singleton?
 9 protected function new (string name="");
10 super.new(name);
11 endfunction
12
13 static function this_type get_global_pool ();
14 if (m_global_pool==null)
15 m_global_pool = new("pool");
16 return m_global_pool;
17 endfunction
18
19 // KEY is the string type passed as a parameter to uvm_pool
20 static function T get_global (KEY key);
21 this_type gpool;
22 gpool = get_global_pool();
23 return gpool.get(key);
24 endfunction
25
26 virtual function T get (string key);
27 if (pool.exists(key)) return pool[key];
28 else begin
29 //print();

30 dump();
31 `uvm_fatal("SQR_POOL",
32 $sformatf("No pool entry exists for sqr name %s", key))
33 end
34 endfunction
35
36 virtual function void add(string key, uvm_sequencer_base item);
37 if(key != "") begin
38 if(pool.exists(key))
39 `uvm_fatal("SQR_POOL",
40 $sformatf("Duplicate name_table entry: name %s", key))
41 pool[key] = item;
42 end
43 endfunction
44
45 virtual function void dump();
46 $display("\n--- SEQUENCER POOL ENTRIES -------");
47 foreach(pool[name]) begin
48 uvm_sequencer_base sqr = pool[name];
49 $write ("%10s : ", name);
50 $display("%s", sqr.get_full_name());
51 end
52 $display("--- END SEQUENCER POOL -------\n");
53 endfunction
54 endclass

Example 3 - sqr_pool class code

D. test_base class

Key features of the test_base class are described in this section. Technically, there is no need to reference the

sqr_pool from the test_base class but the ability to print all the stored sequencer handles before the run phases
and again at the very end of the simulation are especially useful debugging tools if something goes wrong during the
simulation. The dumping for the stored sequencer handles only happens when the user adds +UVM_VERBOSITY=HIGH
(or higher) to the simulation command line, so these printouts do not happen by default. The full test_base class
code is shown in Example 4.

Line 4 – creates a sqr_pool_type abbreviation defined to be the sqr_pool parameterized to the

uvm_sequencer_base type, which is used on line 7.

Line 7 – declares a sqrs handle of the sqr_pool_type and retrieves the singleton sqr_pool handle using the

static get_global_pool() method defined in the sqr_pool class.

Line 23 – dumps the stored sequencer handles just before the simulation run phases. It is useful to have this list of

handles for debugging purposes if the run phases abort with null pointer references.

Line 28 – dumps to the transcript window the stored sequencer handles at the end of the simulation. This makes the

stored sequencer handles easily visible for examination at the end of the simulation.

 1 class test_base extends uvm_test;
 2 `uvm_component_utils(test_base)
 3
 4 typedef sqr_pool #(uvm_sequencer_base) sqr_pool_type;
 5
 6 uvm_factory factory = uvm_factory::get();
 7 sqr_pool_type sqrs = sqr_pool_type::get_global_pool();

 8 env_top e_top;
 9
10 function new(string name, uvm_component parent);
11 super.new(name, parent);
12 endfunction
13
14 function void build_phase(uvm_phase phase);
15 e_top = env_top::type_id::create("e_top", this);
16 endfunction
17
18 function void start_of_simulation_phase(uvm_phase phase);
19 super.start_of_simulation_phase(phase);
20 if (uvm_report_enabled(UVM_HIGH)) begin
21 this.print();
22 factory.print();
23 sqrs.dump();
24 end
25 endfunction
26
27 function void final_phase(uvm_phase phase);
28 if (uvm_report_enabled(UVM_HIGH)) sqrs.dump();
29 endfunction
30 endclass

Example 4 - sqr_pool: test_base-example code

After the build_phase(), connect_phase(), and end_of_elaboration_phase(), and just before executing
the run_phases(), UVM executes the start_of_simulation_phase(), which we often refer to as the pre-run
phase. If something goes wrong during the UVM testbench simulation, it frequently happens during the
run_phases(), so an engineer can re-run a simulation with +UVM_VERBOSITY=HIGH (or higher), which does the
following:

this.print() (Line 21) prints out the entire testbench hierarchical structure.
factory.print() (Line 22) prints the contents of the factory.
sqrs.dump() (Line 23) prints the contents of the sqr_pool to show the sequencers that are available

during the simulation.

At the end of the simulation after all running is complete, and if +UVM_VERBOSITY=HIGH (or higher) has been

added to the simulation command, the final_phase() can be used to conveniently print out the contents of the
sqr_pool just before the simulation finishes.

Printing out the testbench structure, the factory contents and the sqr_pool list of available sequencers can be useful

debugging aids.

E. vseq_base class

As is typical for virtual sequence base classes, The vseq_base class declares handles for the subsequencers, but

the declarations are of the uvm_sequencer_base class type, which permits any extended and parameterized
sequencer class handle to be copied to the uvm_sequencer_base class type. The handle names are not important,
but we have selected handle names that will match the sqr_pool string names that were used when env1 and env2
stored their respective subsequencer handles. The full vseq_base class code is shown in Example 5.

Line 4 – creates a sqr_pool_type abbreviation defined to be the sqr_pool parameterized to the

uvm_sequencer_base type.

Lines 6-9 – declare subsequencer handles of the uvm_sequencer_base type for the four subsequencers used in

this example.

Line 10 – declares a sqrs handle of the sqr_pool_type and retrieves the singleton sqr_pool handle using the

static get_global_pool() method defined in the sqr_pool class.

Lines 16-21 – defines the body() task in the vseq_base class. The body() task retrieves the stored subsequencer

handles by their unique name from the sqrs sqr_pool.

 1 class vseq_base extends uvm_sequence #(uvm_sequence_item);
 2 `uvm_object_utils(vseq_base)
 3
 4 typedef sqr_pool #(uvm_sequencer_base) sqr_pool_type;
 5
 6 uvm_sequencer_base A1;
 7 uvm_sequencer_base A2;
 8 uvm_sequencer_base B;
 9 uvm_sequencer_base C;
10 sqr_pool_type sqrs = sqr_pool_type::get_global_pool();
11
12 function new(string name = "vseq_base");
13 super.new(name);
14 endfunction
15
16 task body();
17 A1 = sqrs.get("A1");
18 A2 = sqrs.get("A2");
19 B = sqrs.get("B");
20 C = sqrs.get("C");
21 endtask
22 endclass

Example 5 - sqr_pool: vseq_base-example code

F. virtual sequence classes

Shown in Example 6 and Example 7 are two virtual sequences that extend from the vseq_base class.

In the first virtual sequence example shown in Example 6:

Line 3 – (blank) is where the subsequencer handles have been inherited from the vseq_base class.

Lines 9-11 - the body() task first declares and factory-creates two a-sequence handles and one b-sequence handle.

Line 13 – calls the vseq_base body() (super.body()) method that sets the inherited subsequencer handles.

Lines 15-20 – runs sequence a on sequencer A1, followed by sequences b and a2 running in parallel on sequencers

B and A2 respectively, followed by sequence a again being run on sequencer A1.

 1 class vseq_A1_B_A2_A1 extends vseq_base;
 2 `uvm_object_utils(vseq_A1_B_A2_A1)
 3
 4 function new(string name="vseq_A1_B_A2_A1");
 5 super.new(name);
 6 endfunction
 7
 8 task body();
 9 a_seq a = a_seq::type_id::create("a");
10 b_seq b = b_seq::type_id::create("b");
11 a_seq a2 = a_seq::type_id::create("a2");

12
13 super.body();
14
15 a.start(A1);
16 fork
17 b.start(B);
18 a2.start(A2);
19 join
20 a.start(A1);
21 endtask
22 endclass

Example 6 - sqr_pool: virtual sequence example 1

In the second virtual sequence example shown in Example 7:

Line 3 – (blank) is where the subsequencer handles have been inherited from the vseq_base class.

Lines 9-11 - the body() task first declares and factory-creates one a-sequence handle, one b-sequence handle and

one c-sequence handle.

Line 13 – calls the vseq_base body() (super.body()) method that sets the inherited subsequencer handles.

Lines 15-19 – runs sequence a on sequencer A1, followed by sequences b and c running in parallel on sequencers

B and C respectively.

 1 class vseq_A1_B_C extends vseq_base;
 2 `uvm_object_utils(vseq_A1_B_C)
 3
 4 function new(string name = "vseq_A1_B_C");
 5 super.new(name);
 6 endfunction
 7
 8 task body();
 9 a_seq a = a_seq::type_id::create("a");
10 b_seq b = b_seq::type_id::create("b");
11 c_seq c = c_seq::type_id::create("c");
12
13 super.body();
14
15 a.start(A1);
16 fork
17 b.start(B);
18 c.start(C);
19 join
20 endtask
21 endclass

Example 7 - sqr_pool: virtual sequence example 2

Appendix II. Sequencer naming conventions

One way to ensure unique names for the sequencer handles stored in the sqr_pool is to use either the software

camelCase naming convention that includes the environment class or handle name followed by the desired sequencer
name with uppercase letter as the first character of the desired sequencer name, or the software snake_case naming
convention that includes the environment class or handle name followed by underscore and the desired sequencer
name.

Example from the env1 class - camelCase:

virtual function void get_sequencers();
 sqrs.add("env1A", a_agnt.get_sequencer());
 sqrs.add("env1C", c_agnt.get_sequencer());
endfunction

Example 8 - env1 environment sequencer camelCase naming convention

Example from the env1 class – snake_case:

virtual function void get_sequencers();
 sqrs.add("env1_A", a_agnt.get_sequencer());
 sqrs.add("env1_B", c_agnt.get_sequencer());
endfunction

Example 9 - env1 environment sequencer snake_case naming convention

Examples from the env2 class - camelCase:

virtual function void get_sequencers();
 sqrs.add("env2A", a_agnt.get_sequencer());
 sqrs.add("env2B", b_agnt.get_sequencer());
endfunction

Example 10 - env2 environment sequencer camelCase naming convention

Examples from the env2 class – snake_case:

virtual function void get_sequencers();
 sqrs.add("env2_A", a_agnt.get_sequencer());
 sqrs.add("env2_B", b_agnt.get_sequencer());
endfunction

Example 11 - env2 environment sequencer snake_case naming convention

Since each environment class or handle name is unique within an upper-level environment, each lower-level

environment can independently name the stored sequencers with names that will be unique to the entire testbench.

