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Abstract - Virtual sequences are an essential element in UVM testbenches. They enable a test to exercise and manage 
multiple DUT interfaces. UVM, however, is silent on how virtual sequences obtain sequencer handles representing those 
multiple interfaces. A normal (non-virtual) sequence is bound to a sequencer when launched. A virtual sequence is not 
bound to any sequencer, and a way must be found to access sequencers. Traditionally, testbenches are constructed with so-
called virtual sequencers, which are used not as sequencers per se but as containers for sequencer handles. p_sequencer 
handles are used to access the sequencer handles in virtual sequences. 
 

This paper will explain why virtual sequencers are not the best way to manage sequencer handles in a virtual sequence. 
We will also discuss an alternative testbench architecture that does not require virtual sequencers but instead uses 
sequencer containers and the resource database. We will share detailed descriptions of two implementations of sequencer 
containers: the sequencer pool (sqr_pool) and the sequencer aggregator (sqr_aggregator). We will demonstrate how 
these containers alleviate the issues associated with virtual sequencers through code examples. 

 
 

I. Virtual Sequences and Virtual Sequencers 
 
UVM sequences are launched with the start() task, which takes a single optional argument. When a valid 

sequencer handle is supplied as the argument, the sequence and sequencer are bound together. A sequence bound to a 
sequencer via the argument to start() is called a normal sequence. When the argument is omitted or null is 
provided, the launched sequence is called a virtual sequence. Each virtual sequence is responsible for obtaining 
sequencer handles to coordinate generated sequence items across multiple sequencers. 

 
UVM is silent on how virtual sequences obtain sequencer handles to transmit sequence items. Traditionally, 

verification engineers use so-called virtual sequencers. A virtual sequencer is a sequencer that serves as a container 
for sequencer handles and does not function as a typical sequencer. It does not transmit sequence items from sequences 
to a driver. A virtual sequencer does none of the usual actions that sequencers are designed to do. Its only purpose is 
to hold sequencer handles. 

 
Virtual sequencers are sequencers derived from the base class uvm_sequencer_base. The members of the virtual 

sequencer (derived) class include sequencer handles, which must be populated sometime between the construction of 
the virtual sequencer and the point where sequences access them.  
 

The virtual sequencer was invented when OVM was widely used before UVM was developed. In the context of 
OVM, virtual sequencers made sense because the resource database did not exist. 

 
II. Existing Virtual Sequence Techniques: Advantages & Disadvantages 

 
Multiple commonly used virtual sequence techniques exist, each with its own advantages and disadvantages. Below 

are three of those techniques. 
 

A. init_vseq Technique 
The init_vseq method is the technique shown on Siemens Verification Academy and is probalby the least useful 

of the techniques described in this paper. 
 



This technique places an init_vseq method in a test_base class, which requires full, hard-coded paths to the 
physical locations of the subsequencers in the testbench. As the testbench grows and changes shape, the paths must 
be properly updated for each new variation of the tests. The init_vseq technique requires the test to call the 
init_vseq() method with a virtual sequence argument to assign the subsequencer handles in each virtual sequence 
before the virtual sequences are started.  

 
In general, hard-coded paths are very problematic in large and evolving UVM testbench environments, and a source 

of null-reference bugs when the paths are not correctly updated. 
 

B. Virtual Sequencer Technique 
Each virtual sequence needs access to the physical subsequencer handles. The virtual sequencer (vsequencer) 

method relies on a top-level environment to copy those handles into one or more vsequencer components, so each 
new environment is responsible for copying the appropriate subsequencer handles into the correct vsequencer. One 
advantage of this technique is that the tests are not required to maintain hard-coded paths to the subsequencers. Instead, 
each test must start virtual sequences on the appropriate vsequencer, and from there, the vseq_base can retrieve 
the handles from the vsequencer component for use by the virtual sequences.  

 
Typically, one thinks of storing component handles in a config object. Still, since sequences must be started on a 

sequencer, which in this case is the vsequencer, the vsequencer acts as the config object to hold the subsequencer 
handles, and each environment is responsible for setting those handles for use by the tests.  

 
After a virtual sequence is started on a vsequencer, the vseq_base class has access to the stored subsequencer 

handles and can retrieve the subsequencer handles in the vseq_base, and each extended virtual sequence is able to 
inherit the properly set subsequencer handles to coordinate sequence activity across the desired subsequencers. 

 
Using the vsequencer method, the only hard-coded path is referenced when the test starts a virtual sequence on a 

path to one or more vsequencers. This can change in an evolving UVM testbench environment, but the changes are 
infrequent, and there would only be a few paths to a few different vsequencers at most. This technique is not nearly 
as problematic as the init_vseq technique described above in Section II-A. 

 
When this paper was published, the vsequencer technique was probably the most commonly implemented virtual 

sequence method used by verification engineers. 
 

C. uvm_resource_db Technique 
The vsequencer method is the most commonly used virtual sequence technique because engineers have been 

operating under the false assumption that subsequencer handles could not be stored as resources and then directly 
retrieved inside a sequence. This false assumption results from engineers commonly attempting to use the 
uvm_config_db API to access resources. Generally speaking, sequences cannot use the uvm_config_db API 
because the uvm_config_db commands require retrieval to a component, and a sequence is not a component. Some 
engineers have figured out that if they hack the uvm_config_db command by passing a component handle of null, 
it will bypass the component-checking mechanism of the uvm_config_db commands. Then they can use an inst-
name string to retrieve a resource, even into a sequence. But this is a needless hack! 

 
The uvm_resource_db API can use simple strings to store and retrieve resources, and the strings are not required 

to be component paths, as required when using the uvm_config_db API. The strings are just passwords that are 
stored with resources that must be matched when retrieving the corresponding resources. 

 
This means each agent can store a subsequencer handle at a string location in the resource name table, and then the 

vseq_base can retrieve the resource from the name table at that string location.  
 
This technique does not require a separate init_vseq method to set subsequencer handles, nor does it require a 

vsequencer config-object-like component to store the subsequencer handles for later retrieval. The subsequencer 
handles are stored as resources and retrieved by the vseq_base class using the simple uvm_resource_db API. The 
disadvantage of this technique is that a large number of virtual sequences might use the uvm_resource_db 



commands to retireve subsequencer handles from the resource pool and the uvm_resource_db (and 
uvm_config_db) API commands are rather expensive simulation-performance commands to use. 

 
III. Hierarchical Independence 

 
A vital issue with virtual sequencers is that they are not hierarchically independent. Hierarchical independence is 

the idea that a component in the UVM component hierarchy does not have to “know” where it is instantiated. It may 
be instantiated anywhere in the hierarchy, and its function is independent of its hierarchical location. Virtual 
sequencers are locked into a particular location in the hierarchy. They are populated with sequencer handles by 
referring to their hierarchical location. Any component, such as a virtual sequencer, that requires a partial or complete 
component path is not hierarchically independent. 

 
To use a virtual sequencer, a virtual sequence must have access to the full hierarchical path of the virtual sequencer. 

Attempting to relocate the virtual sequencer requires changing pathnames to the virtual sequencer called by virtual 
sequences. This becomes a maintenance headache. The problem becomes more acute with larger testbenches with 
many interfaces. 

 
A related issue is the debugging of virtual sequences. The sequencer handles contained in a virtual sequencer must 

be populated somewhere outside the virtual sequencer. Often, but not always, the handles are assigned in the top-level 
test. Sometimes, they are populated by an agent or an environment. A debugging challenge is finding where a 
particular sequencer handle is populated. The virtual sequencer does not tell you how and where the sequencer handles 
obtained their values. 

 
Although less noticeable, block-level sequences are typically started on a full hierarchical path to a single sequencer 

and are, therefore, not hierarchically independent. Again, any repositioning of the block-level sequencer in a UVM 
testbench might require the sequences to be started on an existing sequencer with a new hierarchical path. 

 
IV. Sequence Fundamentals 

 
Sequences must be started on a sequencer. Sequences cannot be started on a driver, nor can they be started on an 

agent, nor can they be started on a config object, nor can they be started on any other component. Any attempt to start 
a sequence on anything other than a sequencer will cause a run-time failure. 

 
Sequences are started on a specified sequencer. Each sequence has a built-in start() method to initiate the 

communication between the sequence and the specified sequencer. When a sequence is started, the m_sequencer 
handle defined in the sequence, which was inherited from the uvm_sequence base class, is set to point to the 
sequencer with which the sequence is communicating. Sequences conduct handshaking actions with the sequencer 
where it is running, and those handshaking activities are only available on a sequencer. 

 
When coordinating multiple sequences across multiple sequencers, each sequence must have a handle to the 

sequencer where it is running. The sequencers themselves have different handles or must have different names. 
 
Traditional approaches to executing sequences have required the test (or a higher-level sequence) to call 

seq.start(path_to_sequencer). If the testbench hierarchy changes, the test must also update the 
path_to_sequencer handles referenced in the start() method. Fixed path handles are a source of bugs as a 
testbench evolves or as a next-generation testbench is patterned after an earlier-generation testbench. 

 
What if the sequencer handle could update itself as the testbench structure evolves? What if multiple uniquely 

named sequencer handles that are referenced by virtual sequences could similarly be automatically updated? These 
are the ideas that are satisfied by using sequencer containers described in this paper. 
 

V. Sequencer Containers 
 
The role of a virtual sequencer is to serve as a container for sequencer handles. Since sequences must be started on 

a sequencer, the sequencer container replaces a config object, frequently used to store many other pieces of information 
required by a UVM testbench. As a virtual sequencer, none of the sequencer machinery is used, so there is no need to 



use a sequencer as a container for sequencer handles. Instead, we can use a data structure designed as a container for 
sequencer handles.  

 
Our alternative is to use a data structure called a sequencer container. At its essence, a sequencer container is an 

associative array that maps names to sequencer handles. Virtual sequences can obtain a handle from the sequencer 
container and then search for sequencer handles stored in the container. 

 
Sequencer containers can be implemented in a variety of ways. Various implementations provide different means for 
accessing the container and other ways to store and retrieve sequencer handles. In this paper, we will detail two 
different implementations. The first, called the sequencer pool, is a singleton data structure derived from the 
uvm_pool class for storing and retrieving sequencer handles. The second, the sequencer aggregator, uses multiple 
associative arrays and provides various means to locate sequencer handles singly or in groups. 

 
VI. Sequencer Pool 

 
The sequencer pool (sqr_pool) is a sequencer container. The sqr_pool is a singleton class derived from 

uvm_pool. It maps string names to sequencer handles, much like UVM RAL uses register names to map to register 
addresses. The sqr_pool example used in this paper is shown in Figure 1. The sqr_pool has methods for adding 
new sequencer handles and retrieving them by name. As a singleton, it is available to all virtual sequences. 

 
This section will look closely at the organization and implementation of the sequencer pool. 
 

A. uvm_pool Class 
 
The sqr_pool class is derived from uvm_pool. Uvm_pool, part of the UVM class library, provides much of the 

functionality required for sqr_pool. The uvm_pool base class defines an associative array with type KEY int and 
type T uvm_void. 

 
class uvm_pool #(type KEY=int, T=uvm_void) extends uvm_object; 
  const static string type_name = "uvm_pool"; 
  typedef uvm_pool #(KEY,T) this_type; 
 
  static protected this_type m_global_pool; 
  protected T pool[KEY]; 

 
Extending the uvm_pool to the user-defined sqr_pool with type KEY string and type T 

uvm_sequencer_base easily creates most of the functionality required by the sqr_pool. 
 

class sqr_pool #(type T=uvm_sequencer_base) extends uvm_pool #(string,T); 
 



 
Figure 1 - Virtual sequence example - uses handles retrieved from the sequencer pool singleton. 

B. sqr_pool Class Example 
 
The virtual sequence example shown in Figure 1 is the same example shown on Siemens' Verification Academy 

[1], which allows the reader to compare the sequencer container techniques described in this paper to the init_vseq 
technique shown on Verification Academy. The init_vseq technique was briefly described in Section II-A.. 

 
This virtual sequence example has a top-level environment (env_top) with two sub-environments (env1 and 

env2). Sub-environment env1 has two agents (a_agent and c_agent) and sub-environment env2 has two more 
agents (b_agent and a second copy of the a_agent).  

 
Each agent has a get_sequencer() method that returns the a handle to the enclosed sequencer. 
 

function uvm_sequencer_base get_sequencer(); 
  return sqr; 
endfunction 

 
Each UVM testbench typically has one environment, but more complex UVM testbenches might have a top-level 

environment and multiple lower-level environments often referred to as sub-environments. The example shown in 
Figure 1 has a top-level environment (env_top) and two sub-environments (env1 and env2). 

 
Each sub-environment has a get_sequencers() method that calls the get_sequencer() method from each 

enclosed agent and stores the returned sequencer handles into uniquely named locations in the sqr_pool, described 
in the next section. Note that sqrs is a handle to the singleton sqr_pool. 

 
function void get_sequencers(); 
  sqrs.add("A1", a_agnt.get_sequencer()); 
  sqrs.add( "C", c_agnt.get_sequencer()); 
endfunction 

 
Any sequencer, virtual and normal, can now locate sequencer handles in the sqr_pool. 
 
The full sub-environment, agent, sqr_pool, test_base and virtual sequence classes are shown in Appendix I at 

the end of this paper. 
 



C. sqr_pool Class 
 
The sequencer pool stores all the sequencer handles used by a single or multi-level environment in an associative 

array named pool, which is accessed by KEYs of type string. 
 

protected T pool[KEY];    // Inherited from uvm_pool – this is the sqr_pool 
 
The sqr_pool overrides two virtual methods defined in the uvm_pool base class: 

(1) get() – The uvm_pool implementation returns the item with the given key or creates a new item at that key location 
if one does not exist. The sqr_pool implementation returns the sequencer handle stored at the key=string 
location or issues a `uvm_fatal message. If no sequencer handle is stored at the referenced KEY location, nothing 
good is going to happen when a test tries to start a sequence on a null handle. 

 
virtual function T get (string key); 
  if (pool.exists(key)) return pool[key]; 
  else begin 
    //print(); // Uncomment for verbose printing 
    dump(); 
    `uvm_fatal("SQR_POOL", 
    $sformatf("No pool entry exists for sqr name %s", key)) 
  end 
endfunction                                                

 
(2) add() – The uvm_pool version adds the given item to the associative array at the given KEY location and quietly 

overwrites the contents if there is already an item at that location. The sqr_pool version adds the sequencer handle to 
the associative array at the given KEY location or issues a `uvm_fatal message that a "Duplicate name_table entry: 
name %s" exists if there is a sequencer handle is already stored at that location, thus avoiding a previous handle being 
silently overridden. The sqr_pool should not allow a new assignment to overwrite the existing contents of the same 
location since that will delete the existing sequencer handle, which is probably used elsewhere by a virtual sequence. 
Again, nothing good will happen if a sequencer handle is silently lost. 

 
virtual function void add(string key, uvm_sequencer_base item); 
  if(key != "") begin 
    if(pool.exists(key)) 
      `uvm_fatal("SQR_POOL",  
          $sformatf("Duplicate name_table entry: name %s", key)) 
    pool[key] = item; 
  end 
endfunction 
 

The do_print() method is inherited from the uvm_pool base class. The print() method, which calls the 
do_print method, gives a detailed component-structure report with more information and verbosity than is typically 
required when debugging a UVM testbench. The print() method is still available but not particularly useful due to 
its complexity and verbosity. 

 
The sqr_pool class adds a simplified and abbreviated printout of all sequencer handles stored in the sequencer 

pool by calling a dump() method. 
 

virtual function void dump(); 
  $display("\n--- SEQUENCER POOL ENTRIES -------"); 
  foreach(pool[name]) begin 
    uvm_sequencer_base sqr = pool[name]; 
    $write  ("%10s : ", name); 
    $display("%s", sqr.get_full_name()); 
  end 
  $display("--- END SEQUENCER POOL     -------\n"); 
endfunction 



 
If the simulation is run with +UVM_VERBOSITY=HIGH or higher, the test_base calls the dump() method in the 

start_of_simulation_phase() and again in the final_phase(). Sequencer containers should be fully 
populated by the end of the end_of_elaboration_phase(). Calling dump() in the 
start_of_simulation_phase() helps debug sequencer handle issues if the simulation aborts during the run 
phases, and calling dump() in the final_phase() easily allows an engineer to view the sequencer handles that were 
stored and available during the simulation, at the end of the simulation in the transcript window. 

 
function void start_of_simulation_phase(uvm_phase phase); 
  super.start_of_simulation_phase(phase); 
  if (uvm_report_enabled(UVM_HIGH)) begin 
    this.print(); 
    factory.print(); 
    sqrs.dump(); 
  end 
endfunction 
 
function void final_phase(uvm_phase phase); 
  if (uvm_report_enabled(UVM_HIGH)) sqrs.dump(); 
endfunction 

 
D. Sequencer Pool and the Top-Level Test 

 
When doing simple block-level testing using a single agent, The test starts a sequence on a named sequencer 

referenced from the sqr_pool. The test is not required to know the full path to the sequencer where the sequence is 
started. The block-level test simply references the sequencer by a user-friendly name that was assigned when the 
sequencer handle was stored in the sqr_pool. 

 
When coordinating and executing virtual sequences across multiple sequencers, the test simply coordinates 

sequences across multiple uniquely named sequencers whose handles were stored with unique names in the 
sqr_pool. There is no need to retrieve the sequencer handles from a virtual sequencer, or from stored resources using 
the uvm_resource_db API. 

 
The capability to consistently access sequencer handles the same way in both simple sequences or more complex 

virtual sequences has been the missing link to achieving a simple and unified sequence execution strategy. A globally 
accessible sequencer pool addresses this missing unified strategy. 

 
E. Uniquely Named Sequencers Limitation? 

 
The sqr_pool technique described in this section requires all the testbench sequencers to have unique string-names 

in the sqr_pool. The virtual sequencer technique (described in Section II-B) allows sequencer handles in different 
virtual sequencers to have the same name. This means the virtual sequencer technique runs the risk that virtual 
sequences can be started on the correct sequencer-type but on the wrong virtual sequencer. This might be a difficult 
bug to identify. 

 
Because time spent debugging is often the #1 factor that puts a project behind schedule [8], a coding style that helps 

avoid bugs in the first place is a worthwhile investment. Taking time to plan to ensure sequencers have unique names 
is not a burdensome requirement. Executing sequences on the uniquely named sequencers helps to avoid running the 
wrong virtual sequence on a name that might exist in more than one virtual sequencer. 

 
Since each agent, even agents in arrays, will add its sequencer handle onto the pool, the handles will be unique. One 

must ensure all names associated with sequencer handles, including those in arrays are unique and easy to understand. 
 
 
 



VII. Sequencer Aggregator 
 

The sequencer aggregator is another sequencer container. Like the sequencer pool, it is a container for sequencer 
handles. It performs the same function as a sequencer pool – supplying sequencer handles to virtual sequences. 
Whereas the sequencer pool is a singleton, the sequencer aggregator is not, allowing for multiple aggregators. Multiple 
aggregators allow for separate sequencer domains and namespaces. The sequencer aggregator is called an aggregator 
because it enables you to aggregate a collection of sequencer handles as the testbench is created (during the UVM 
build and connect phases). 

 
This section will look closely at the organization and implementation of a sequencer aggregator. 
 
The sequencer aggregator has multiple associative arrays containing sequencer handles. These are the core of the 

sequencer aggregator. 
 

class sqr_aggregator; 
  typedef uvm_sequencer_base sqr_q_t[$]; 
 
  local uvm_sequencer_base sqr_table[string]; 
  local uvm_sequencer_base name_table[string]; 
  local sqr_q_t kind_table[string]; 

 
The methods in the sqr_aggregator class can add a new sequencer handle to the aggregator or find a handle or 

group of handles based on some criteria. Each of the three associative arrays, sqr_table, name_table, and 
kind_table, stores sequencer handles differently so that they can be retrieved differently. The name_table array 
lets you look up sequencers by an assigned name. The kind_table enables you to look up groups of sequencers by 
assigned kind. Finally, sqr_table lets you look up sequencers by full path name. All three tables are updated when 
a new sequencer handle is added to an aggregator. 
 

  function void add(uvm_sequencer_base sqr, string name, string kind); 
    sqr_q_t q; 
    string path = sqr.get_full_name(); 
    sqr_table[path] = sqr; 
 
    if(kind != "") begin 
      if(kind_table.exists(kind)) 
        q = kind_table[kind]; 
      q.push_back(sqr); 
      kind_table[kind] = q; 
    end 
 
    if(name != "") begin 
      if(name_table.exists(name)) 
     `uvm_info("SQR_AGGREGATOR", 
            $sformatf("replacing sequencer with name %s", name), 
            UVM_NONE) 
      name_table[name] = sqr; 
    end 
   
  endfunction 

 
 
The sequencer aggregator has four lookup functions, one for each of the different ways to look up sequencers. First, 
lookup_path()finds a sequencer by full path name. Finding sequencer handles by full path name is not used often 
because requiring full path names breaks hierarchical independence. However, it can be helpful in some situations and 
for debugging. 
 
 



  function uvm_sequencer_base lookup_path(string path); 
    if(sqr_table.exists(path)) 
      return sqr_table[path]; 
    else 
      return null; 
  endfunction 

 
The lookup_name() function returns a single sequencer handle whose name matches a name string. The name is 
assigned when the sequencer handle is added to the aggregator. 
 

  function uvm_sequencer_base lookup_name(string name); 
    if(name_table.exists(name)) 
      return name_table[name]; 
    else 
      return null; 
  endfunction 

 
lookup_path() finds a group of zero or more sequencer handles whose path name matches a regular expression. 
The UVM regular expression facility, which supports posix regular expression syntax, compiles and matches regular 
expressions. lookup_path() is useful when you want to locate a collection of sequencers whose hierarchical location 
is subordinate to a particular component, for example. 
 

  function sqr_q_t lookup_path_regex(string regex); 
    sqr_q_t q = {}; 
    foreach(sqr_table[path]) begin 
      if(uvm_re_match(regex, path)) 
 q.push_back(sqr_table[path]); 
    end 
    return q; 
  endfunction 

 
Finally, lookup_kind() lets you find a group of zero or more sequencer handles that all have the same kind string. 
A “kind” is an arbitrary string assigned to sequencer handles as they are added to the aggregator. 
 

  function sqr_q_t lookup_kind(string kind); 
    return kind_table[kind]; 
  endfunction 
 

For completeness and debugging our implementation of a sequencer aggregator contains a dump() function. This 
function prints out all the internal tables. 

 
  function void dump(); 
     
    $display("--- SEQUENCER AGGREGATOR ---"); 
 
    $display("  by name:"); 
    foreach(name_table[name]) begin 
      uvm_sequencer_base sqr = name_table[name]; 
      $display("    %s -> %s", name, sqr.get_full_name()); 
    end 
     
    $display("  by kind:"); 
    foreach(kind_table[kind]) begin 
      sqr_q_t q = kind_table[kind]; 
      $display("    %s", kind); 
      foreach(q[i]) begin 
     uvm_sequencer_base sqr = q[i]; 



     $display("      %s", sqr.get_full_name()); 
      end 
    end 
 
    $display("  by path:"); 
    foreach(sqr_table[path]) begin 
      $display("    %s", path); 
    end 
 
  endfunction 

 
A working example of the sequencer aggregator is in [6] and more discussion can be found in [5]. 
 

VIII. Sequencer Aggregator and Pool Comparison 
 

The sequencer pool and sequence aggregator store sequencer handles so virtual sequences can retrieve and use them. 
The choice of which to use is application-dependent. 

The sequencer pool is a singleton that does not have to be explicitly instantiated. It is immediately available to any 
object, specifically virtual sequences. It has only one associative array for storing and retrieving sequencer handles, 
providing a single namespace for sequencer names. All sequencer handles put into the sequencer pool must have 
unique names. In large-scale systems, there is a risk of a sequencer name clash. A fatal error occurs if a second (or 
later) sequencer handle is inserted with the same name. This prevents the sequencer pool from silently handing back 
the wrong sequencer handle. Also, the sequencer pool provides no means to look up groups of sequencer handles by 
regular expression or kind.  

Sequencer aggregators, on the other hand, must be explicitly instantiated and stored in the resource database so that 
virtual sequences can find them. However, they provide more ways to locate sequencer handles, such as in groups. 

The sequencer pool is helpful for a wide variety of applications, particularly in testbenches for relatively simple 
devices with a small number of interfaces (and thus a small number of sequencers). Sequencer aggregators are best 
with large-scale designs and multiple interface domains.  

Sequencer aggregators are frequently required in an environment where multiple block-level testbenches are built 
independently and later integrated to form subsystem-level and system-level testbenches. In that development style, 
it is important to maintain hierarchical independence and ensure no accidental name clashes. 
 

IX. Sequencers Interfaces 
 
UVM agents have three primary interfaces, as shown in Figure 2: the virtual interface (vif) for connecting signals 

on the DUT, an analysis port for sending sampled transactions to analysis components, and a sequencer interface for 
initiating transactions. The virtual interface and the analysis port are visible on the boundary of the agent. However, 
the sequencer interface is not. “Reaching in” (a hierarchical reference) is often used by using dot notation to access 
the agent’s class member that holds the sequencer handle. Allowing unrestricted access to the sequencer handle is 
awkward and can be dangerous. 

 



 
Figure 2- Sequencer interfaces block diagram 

We propose a convention where each agent has a get_sequencer() method, which returns a handle to the 
sequencer contained in the agent, and each environment has a get_sequencers() method to populate the sequencer 
container with sequencers in the contained agents. The convention requires that the get_sequencer() method be 
called for each agent in the environment and adds the sequencer handles into the sequencer container(s). An agent's 
get_sequencer() method simply returns the agent’s sequencer handle. 
 

class agent extends uvm_component; 
 
  local uvm_sequencer#(transaction) sqr; 
 
  function uvm_sequencer_base get_sequencer(); 
    return sqr; 
  endfunction 

 
An environment that contains multiple agents populates the sequencer aggregator or sequencer pool with all the 

sequencer handles from the agents. Note that get_sequencers() takes a reference argument to a sequencer aggregator. 
It is important that a ref argument is used. This prevents unnecessary copying. If you are using a sequencer pool, the 
argument is not necessary. Instead, the sequencers are added to the singleton pool.  

 
  class multi_if_env extends uvm_component; 
 
  local agent agt_A; 
  local agent agt_B; 
 
  function void get_sequencers(ref sqr_aggregator sqrs); 
    sqrs.add(agt_A.get_sequencer(), "control", "control"); 
    sqrs.add(agt_B.get_sequencer(), "data", "data"); 
  endfunction 
 
endclass 
 

In the example above, two sequencers are added to the aggregator, one from agent A and one from agent B. Each 
agent’s get_sequencer function is called to retrieve its sequencer handles to be passed to the aggregator’s add() 
function.  

 



The top-level test creates a new aggregator and populates it with sequencer handles by calling get_sequencers() 
in the environment. It does this in the end_of_elaboration phase after the entire component hierarchy is in place. 

 
class test extends uvm_component; 
 
  local sqr_aggregator sqrs; 
 
  function void end_of_elaboration_phase(uvm_phase phase); 
    sqrs = new(); 
    env.get_sequencers(sqrs);  
    uvm_resource_db#(sqr_aggregator)::set("*", "sqrs",  sqrs, this);  
  endfunction 
 
endclass 

 
The test also puts the sequencer aggregator into the resource database to make it available to virtual sequences. This 
step is not necessary if you are using the sequencer pool. 
 
 

X. Verification IP (VIP) Considerations 
 
Verification Intellectual Property (VIP) is often purchased or leased from third party vendors and frequently 

complicates advanced verification environments. The problem is that user sequences must know the full path names 
to the sequencers inside of the VIP agents to execute user-defined sequences on the VIP agent-sequencers. Once the 
path name to the VIP agent-sequencer is known, engineers frequently store that handle inside of a virtual sequencer, 
which is one reason that the vsequencer technique shown in Section II-B, is so commonly used by verification 
engineers. 

 
It is recommended that VIP vendors add the simple get_sequencer() method to the VIP-agent. Users could then 

call the agent-get_sequencer() method from the user's environment code to store the VIP sequencer handle in the 
sqr_pool for easy reference from the user's block-level sequences and multi-block level virtual sequences. 

 
XI. Summary 

 
Virtual sequencers were invented as a use model for virtual sequences in OVM. They are not hierarchically 

independent, thwarting reuse and testbench composition. They are also notoriously difficult to debug. 
 
Sequencer containers mitigate the issues of using virtual sequencers. Sequencer containers hold a collection of 

sequencer handles mapped to string names. Virtual sequences can retrieve sequencer handles from sequencer 
containers instead of virtual sequencers. 

 
We have outlined two implementations of sequencer containers, the sequencer aggregator (sqr_aggregator) and 

sequencer pool (sqr_pool). The singleton sequencer pool is a good choice when it is feasible to assign unique names 
to all sequencer handles in a testbench. Sequencer aggregators are a good choice when there are multiple interface 
domains or testbenches block-level testbenches will be composed into subsystem and system-level testbenches. 

 
Treating sequencers as agent interfaces, like virtual interfaces and analysis ports, enables testbench composition 

and protects agents from improper access. 
 
The use model for sequencer containers requires that sequencer handles can be located in agents and environments 

in a uniform manner. We proposed that all agents include a get_sequencer() method to return its sequencer and 
each environment includes a get_sequencers() method to populate the sequencer containers from its contained 
agents and sub-environments. 

 
Finally, the sequencer container techniques described in this paper simplify and unify how sequences and virtual 

sequences can be run in a UVM testbench. 
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Appendix I. Required Sequencer Pool Coding Modifications 

 
What coding requirements are needed to implement the sequencer pool technique? This Appendix shows the simple 

modifications required to implement the sequencer pool technique. 
 

A. Agent classes 
 
Each agent declares handles for the sequencer and the driver. It is common to use the handle names sqr and drv. 

In the sequencer pool technique, the agent adds the get_sequencer() method to return the handle for the declared 
sqr sequencer. The get_sequencer() method requires three very simple lines of code shown on Lines 26-28 in 
Example 1. The full agent class code is shown below. 

 
 1 class agent extends uvm_component; 
 2   `uvm_component_utils(a_agent) 
 3  
 4   a_driver    drv; 
 5   a_sequencer sqr; 
 6  
 7   function new(string name, uvm_component parent); 
 8     super.new(name, parent); 
 9   endfunction 
10  
11   function void build_phase(uvm_phase phase); 
12     drv =    a_driver::type_id::create("drv", this); 
13     sqr = a_sequencer::type_id::create("sqr", this); 
14   endfunction 
15  
16   function void connect_phase(uvm_phase phase); 
17     drv.seq_item_port.connect(sqr.seq_item_export); 
18   endfunction 
19    
20   //------------------------------------------------------------------------- 
21   // The environment will ask this agent for the sqr handle to  
22   //     be stored in the sqr_pool. 
23   // The environment will call this agnt.get_sequencer() method to retrieve 
24   //     the sequncer handle from this agent. 
25   //------------------------------------------------------------------------- 
26   function uvm_sequencer_base get_sequencer(); 
27     return sqr; 
28   endfunction 
29 endclass 

Example 1 - sqr_pool: agent-example code 

B. Envrionment classes 
 
Each environment that builds the agent(s) includes its own get_sequencers() method that calls the individual 

get_sequencer() method from each agent and stores the retrieved sequencer handle into a uniquely named string 
location in the sqr_pool singleton. The full env1 class code is shown in Example 2. 



 
Lines 21-24 - defines the get_sequencers() method used in the 

env1 block diagram as shown in Figure 3.  
 
It is the job of the environment(s) to do the naming of the subsequencer 

handles used by the sqr_pool. The agent(s), including any VIP agents, 
are not required to know what name was used to store the agent-sequencer 
handles. 

 
 1 class env1 extends uvm_env; 
 2   `uvm_component_utils(env1) 
 3  
 4   a_agent a_agnt; 
 5   c_agent c_agnt; 
 6  
 7   function new(string name, uvm_component parent); 
 8     super.new(name, parent); 
 9   endfunction 
10  
11   function void build_phase(uvm_phase phase); 
12     a_agnt = a_agent::type_id::create("a_agnt", this); 
13     c_agnt = c_agent::type_id::create("c_agnt", this); 
14   endfunction 
15  
16   //------------------------------------------------------------------- 
17   // Wait for build_phase to complete then grab and store the subsequencer 
18   // handles into uniquely named locations in the singleton sqr_pool 
19   //------------------------------------------------------------------- 
20  
21   function void get_sequencers(); 
22     sqrs.add("A1", a_agnt.get_sequencer()); 
23     sqrs.add( "C", c_agnt.get_sequencer()); 
24   endfunction 
25   //--------------------------------------------------------- 
26   // In this example, the stored sqr handles are: 
27   //--------------------------------------------------------- 
28   // A1 Sequencer handle is stored in the sqr_pool: 
29   // pool["A1"] : "e_top.e1.a_agnt.sqr" 
30   //--------------------------------------------------------- 
31   // C Sequencer handle is stored in the sqr_pool: 
32   // pool["C"]  : "e_top.e1.c_agnt.sqr" 
33   //--------------------------------------------------------- 
34 endclass 

Example 2 - sqr_pool: environment-example code 

C. sqr_pool class 
 
The sqr_pool class is a singleton extended from the functionality already defined in the uvm_pool base class, as 

described in Section VI-A. The full sqr_pool class code is shown in Example 3. 
 
Line 1 – parameterizes the sqr_pool class to the uvm_sequencer_base type, which is extended from the 

uvm_pool base class parameterized with the KEY type string. 
 
Line 3 – declare this_type to be a sqr_pool parameterized to the uvm_sequencer_base type. 
 
Line 5 – declare the protected singleton m_global_pool handle.  
 

Figure 3 - env1 block diagram 



Line 6 – shows that the protected pool with access type string is inherited from the uvm_pool base class. 
pool is the singleton sqr_pool handle referenced inside of this class. 

 
Lines 9-11 – implements a protected new() constructor, which restricts calling this constructor from anything, 

but the static get_global_pool() method that starts on line 13. 
 
Lines 13-17 – defines the static get_global_pool() method. The first time this method is called, the 

m_global_pool handle will be null so this static method will call the protected new() constructor to create 
the one and only (singleton) copy of the m_global_pool handle. On line 16, the first time and every other time this 
static method is called, it will return the singleton handle to the sqr_pool (m_global_pool). 

 
Lines 19-24 – defines a static get_global(KEY) method to return the m_global_pool handle of a string-

parameterized version of the sqr_pool. This appears to be a safety function in case multiple sqr_pools of types 
other than string happen to exist in the UVM testbench. We do not have other sqr_pool#(KEY) types in this 
example so this method is not called from this example and might never be called from a UVM testbench. 

 
Lines 26-34 – defines the virtual get() method to retrieve a user-named sequencer handle from the sqr_pool. 

If a handle by this name does not exist in the sqr_pool, the simulation will report a missing `uvm_fatal message 
and abort the simulation. 

 
Lines 36-43 – defines the virtual add() method to push a uniquely user-named sequencer handle onto the 

sqr_pool. If there is already a sequencer by this name in the sqr_pool, the simulation will report a duplicate 
`uvm_fatal message and abort the simulation. 

 
Lines 45-53 – defines the virtual dump() function to print out in a simple format, the current contents of the 

sqr_pool showing the unique user-defined sequencer names and the actual path to each sequencer. 
 

 1 class sqr_pool #(type T=uvm_sequencer_base) extends uvm_pool #(string,T); 
 2  
 3   typedef sqr_pool #(T) this_type; 
 4  
 5   static protected this_type m_global_pool; 
 6   // protected T pool[KEY];    // Inherited – this is the sqr_pool 
 7  
 8   // Should the new-constructor be protected to make sqr_pool a singleton? 
 9   protected function new (string name=""); 
10     super.new(name); 
11   endfunction 
12  
13   static function this_type get_global_pool (); 
14     if (m_global_pool==null) 
15       m_global_pool = new("pool"); 
16     return m_global_pool; 
17   endfunction                                    
18  
19   // KEY is the string type passed as a parameter to uvm_pool 
20   static function T get_global (KEY key); 
21     this_type gpool; 
22     gpool = get_global_pool();  
23     return gpool.get(key); 
24   endfunction                                    
25  
26   virtual function T get (string key); 
27     if (pool.exists(key)) return pool[key]; 
28     else begin 
29       //print(); 



30       dump(); 
31       `uvm_fatal("SQR_POOL", 
32       $sformatf("No pool entry exists for sqr name %s", key)) 
33     end 
34   endfunction                                                   
35  
36   virtual function void add(string key, uvm_sequencer_base item); 
37     if(key != "") begin 
38       if(pool.exists(key)) 
39         `uvm_fatal("SQR_POOL", 
40         $sformatf("Duplicate name_table entry: name %s", key)) 
41       pool[key] = item; 
42     end 
43   endfunction 
44  
45   virtual function void dump(); 
46     $display("\n--- SEQUENCER POOL ENTRIES -------"); 
47     foreach(pool[name]) begin 
48       uvm_sequencer_base sqr = pool[name]; 
49       $write  ("%10s : ", name); 
50       $display("%s", sqr.get_full_name()); 
51     end 
52     $display("--- END SEQUENCER POOL     -------\n"); 
53   endfunction 
54 endclass 

Example 3 - sqr_pool class code 

 
D. test_base class 

 
Key features of the test_base class are described in this section. Technically, there is no need to reference the 

sqr_pool from the test_base class but the ability to print all the stored sequencer handles before the run phases 
and again at the very end of the simulation are especially useful debugging tools if something goes wrong during the 
simulation. The dumping for the stored sequencer handles only happens when the user adds +UVM_VERBOSITY=HIGH 
(or higher) to the simulation command line, so these printouts do not happen by default. The full test_base class 
code is shown in Example 4. 

 
Line 4 – creates a sqr_pool_type abbreviation defined to be the sqr_pool parameterized to the 

uvm_sequencer_base type, which is used on line 7. 
 
Line 7 – declares a sqrs handle of the sqr_pool_type and retrieves the singleton sqr_pool handle using the 

static get_global_pool() method defined in the sqr_pool class. 
 
Line 23 – dumps the stored sequencer handles just before the simulation run phases. It is useful to have this list of 

handles for debugging purposes if the run phases abort with null pointer references. 
 
Line 28 – dumps to the transcript window the stored sequencer handles at the end of the simulation. This makes the 

stored sequencer handles easily visible for examination at the end of the simulation. 
 
 

 1 class test_base extends uvm_test; 
 2   `uvm_component_utils(test_base) 
 3  
 4   typedef sqr_pool #(uvm_sequencer_base) sqr_pool_type; 
 5  
 6   uvm_factory   factory =   uvm_factory::get(); 
 7   sqr_pool_type sqrs    = sqr_pool_type::get_global_pool(); 



 8   env_top       e_top; 
 9  
10   function new(string name, uvm_component parent); 
11     super.new(name, parent); 
12   endfunction 
13  
14   function void build_phase(uvm_phase phase); 
15     e_top = env_top::type_id::create("e_top", this); 
16   endfunction 
17  
18   function void start_of_simulation_phase(uvm_phase phase); 
19     super.start_of_simulation_phase(phase); 
20     if (uvm_report_enabled(UVM_HIGH)) begin 
21       this.print(); 
22       factory.print(); 
23       sqrs.dump(); 
24     end 
25   endfunction 
26  
27   function void final_phase(uvm_phase phase); 
28     if (uvm_report_enabled(UVM_HIGH)) sqrs.dump(); 
29   endfunction 
30 endclass 

Example 4 - sqr_pool: test_base-example code 

After the build_phase(), connect_phase(), and end_of_elaboration_phase(), and just before executing 
the run_phases(), UVM executes the start_of_simulation_phase(), which we often refer to as the pre-run 
phase. If something goes wrong during the UVM testbench simulation, it frequently happens during the 
run_phases(), so an engineer can re-run a simulation with +UVM_VERBOSITY=HIGH (or higher), which does the 
following: 

 
this.print() (Line 21) prints out the entire testbench hierarchical structure. 
factory.print() (Line 22) prints the contents of the factory. 
sqrs.dump() (Line 23) prints the contents of the sqr_pool to show the sequencers that are available 

during the simulation. 
 
At the end of the simulation after all running is complete, and if +UVM_VERBOSITY=HIGH (or higher) has been 

added to the simulation command, the final_phase() can be used to conveniently print out the contents of the 
sqr_pool just before the simulation finishes. 

 
Printing out the testbench structure, the factory contents and the sqr_pool list of available sequencers can be useful 

debugging aids. 
 

E. vseq_base class 
 
As is typical for virtual sequence base classes, The vseq_base class declares handles for the subsequencers, but 

the declarations are of the uvm_sequencer_base class type, which permits any extended and parameterized 
sequencer class handle to be copied to the uvm_sequencer_base class type. The handle names are not important, 
but we have selected handle names that will match the sqr_pool string names that were used when env1 and env2 
stored their respective subsequencer handles. The full vseq_base class code is shown in Example 5. 

 
Line 4 – creates a sqr_pool_type abbreviation defined to be the sqr_pool parameterized to the 

uvm_sequencer_base type. 
 
Lines 6-9 – declare subsequencer handles of the uvm_sequencer_base type for the four subsequencers used in 

this example. 



 
Line 10 – declares a sqrs handle of the sqr_pool_type and retrieves the singleton sqr_pool handle using the 

static get_global_pool() method defined in the sqr_pool class. 
 
Lines 16-21 – defines the body() task in the vseq_base class. The body() task retrieves the stored subsequencer 

handles by their unique name from the sqrs sqr_pool. 
 

 1 class vseq_base extends uvm_sequence #(uvm_sequence_item); 
 2   `uvm_object_utils(vseq_base) 
 3  
 4   typedef sqr_pool #(uvm_sequencer_base) sqr_pool_type; 
 5  
 6   uvm_sequencer_base A1; 
 7   uvm_sequencer_base A2; 
 8   uvm_sequencer_base B; 
 9   uvm_sequencer_base C; 
10   sqr_pool_type sqrs = sqr_pool_type::get_global_pool(); 
11  
12   function new(string name = "vseq_base"); 
13     super.new(name); 
14   endfunction 
15  
16   task body(); 
17     A1 = sqrs.get("A1"); 
18     A2 = sqrs.get("A2"); 
19     B  = sqrs.get("B"); 
20     C  = sqrs.get("C"); 
21   endtask 
22 endclass 

Example 5 - sqr_pool: vseq_base-example code 

F. virtual sequence classes 
 
Shown in Example 6 and Example 7 are two virtual sequences that extend from the vseq_base class.  
 
In the first virtual sequence example shown in Example 6: 
 
Line 3 – (blank) is where the subsequencer handles have been inherited from the vseq_base class. 
 
Lines 9-11 - the body() task first declares and factory-creates two a-sequence handles and one b-sequence handle. 
 
Line 13 – calls the vseq_base body() (super.body()) method that sets the inherited subsequencer handles. 
 
Lines 15-20 – runs sequence a on sequencer A1, followed by sequences b and a2 running in parallel on sequencers 

B and A2 respectively, followed by sequence a again being run on sequencer A1. 
 

 1 class vseq_A1_B_A2_A1 extends vseq_base; 
 2   `uvm_object_utils(vseq_A1_B_A2_A1) 
 3  
 4   function new(string name="vseq_A1_B_A2_A1"); 
 5     super.new(name); 
 6   endfunction 
 7  
 8   task body(); 
 9     a_seq  a = a_seq::type_id::create("a"); 
10     b_seq  b = b_seq::type_id::create("b"); 
11     a_seq a2 = a_seq::type_id::create("a2"); 



12  
13     super.body(); 
14  
15     a.start(A1); 
16     fork 
17        b.start(B); 
18       a2.start(A2); 
19     join 
20     a.start(A1); 
21   endtask 
22 endclass 

Example 6 - sqr_pool: virtual sequence example 1 

 
In the second virtual sequence example shown in Example 7: 
 
Line 3 – (blank) is where the subsequencer handles have been inherited from the vseq_base class. 
 
Lines 9-11 - the body() task first declares and factory-creates one a-sequence handle, one b-sequence handle and 

one c-sequence handle. 
 
Line 13 – calls the vseq_base body() (super.body()) method that sets the inherited subsequencer handles. 
 
Lines 15-19 – runs sequence a on sequencer A1, followed by sequences b and c running in parallel on sequencers 

B and C respectively. 
 
 

 1 class vseq_A1_B_C extends vseq_base; 
 2   `uvm_object_utils(vseq_A1_B_C) 
 3  
 4   function new(string name = "vseq_A1_B_C"); 
 5     super.new(name); 
 6   endfunction 
 7  
 8   task body(); 
 9     a_seq a = a_seq::type_id::create("a"); 
10     b_seq b = b_seq::type_id::create("b"); 
11     c_seq c = c_seq::type_id::create("c"); 
12  
13     super.body(); 
14  
15     a.start(A1); 
16     fork 
17       b.start(B); 
18       c.start(C); 
19     join 
20   endtask 
21 endclass 

Example 7 - sqr_pool: virtual sequence example 2 

  



Appendix II. Sequencer naming conventions 
 
One way to ensure unique names for the sequencer handles stored in the sqr_pool is to use either the software 

camelCase naming convention that includes the environment class or handle name followed by the desired sequencer 
name with uppercase letter as the first character of the desired sequencer name, or the software snake_case naming 
convention that includes the environment class or handle name followed by underscore and the desired sequencer 
name. 

 
Example from the env1 class - camelCase: 

virtual function void get_sequencers(); 
  sqrs.add("env1A", a_agnt.get_sequencer()); 
  sqrs.add("env1C", c_agnt.get_sequencer()); 
endfunction 

Example 8 - env1 environment sequencer camelCase naming convention 

 
Example from the env1 class – snake_case: 

virtual function void get_sequencers(); 
  sqrs.add("env1_A", a_agnt.get_sequencer()); 
  sqrs.add("env1_B", c_agnt.get_sequencer()); 
endfunction 

Example 9 - env1 environment sequencer snake_case naming convention 

 
Examples from the env2 class - camelCase: 

virtual function void get_sequencers(); 
  sqrs.add("env2A", a_agnt.get_sequencer()); 
  sqrs.add("env2B", b_agnt.get_sequencer()); 
endfunction 

Example 10 - env2 environment sequencer camelCase naming convention 

 
Examples from the env2 class – snake_case: 

virtual function void get_sequencers(); 
  sqrs.add("env2_A", a_agnt.get_sequencer()); 
  sqrs.add("env2_B", b_agnt.get_sequencer()); 
endfunction 

Example 11 - env2 environment sequencer snake_case naming convention 

 
Since each environment class or handle name is unique within an upper-level environment, each lower-level 

environment can independently name the stored sequencers with names that will be unique to the entire testbench. 


