(2025

DESIGN AND VERIFICATION ™

2RI\
Dv ‘ P b 1 N Life is too short for bad

CONFERENCE AND EXHIBITION or boring training!

SAN JOSE, CA, USA
FEBRUARY 24-27, 2025

Sequencer Containers - A Unified and Simple Technique
to Execute Both Sequences and Virtual Sequences

Clifford E. Cummings Mark Glasser
Paradigm Works, Inc. Paradigm Works, Inc.

_‘ PARADIGM"®
WORKS

,‘ PARADIGM'*

wo R KS SYSTEMS INITIATIVE

2 of 30

Agenda
 Hierarchical independence - And why you should care
* Agent & sequencer interfaces « Which interface causes problems?

Typically uses

a vsegeuncer

» Typical techniques forI_starting sequencesjand]virtual sequences

sequence.start(...)

A simple technique for storing and

° Sequencer containers - ..
retrieving sequencer handles

» Sequencer Pool (sgqr pool) « Simple and efficient container

» Sequencer Aggregator (sqr aggregator)«— more advanced container
for larger testbenches

* Conclusions

Please read the paper for more
information and details

SYSTEMS INITIATIVE

FEBRU, -27, 2025

3 of 30

Hierarchical Independence

 Hierarchical independence definition:
— A component does not have to “know” where it is

hierarchically instantiated Component functionality is independent
— It may be instantiated anywhere in the hierarchy < | of hierarchical location
— Sequencers are locked into a set location Sequencers themselves are
in the hierarchy hierarchically independent
— Virtual sequencers are locked into a set location Tests and sequences must know where
in the hierarchy sequencers are hierarchically located

 Virtual sequencers contain sequencer handles

— The sequencer handles are assigned relative
hierarchical paths to subsequencers

Partial or

« Components that require a |component path oo T me———

are not hierarchically independent

accellera Including
virtual sequencers
SYSTEMS INITIATIVE

FEBRU, -27, 2025

4 of 30

Agent & Sequencer Interfaces

This hierarchically path can change vif retrieved from resource database
(IS location-dependent) (not location-dependent)

— — — —

I
uvm_analysis port used to

broadcast sampled transactions
(not location-dependent)

No sqgr input port |
(sqr IS location-dependent)

test must hierarchically
access this sqr

(IS location-dependent) [T

sqr / drv port connections |—

(not location-dependent)

vif used to drive vif used to sample DUT

DUT inputs inputs and outputs

2025
accellera not location-dependent not location-dependent DDGVNDC

SYSTEMS INITIATIVE

nnnnnnn

5 0of 30

Starti ng Seq uences Not hard ... as long as you remember!

Typical Technique

Starting sequences is NOT
hierarchically independent | seql.start (etop.e2.a agnt.sqr) |

Subtle bugs are hardest to find and fix

|seql.start(etop.el.a_agnt.sqr)|

| seql.start (el.a agnt.sqr) | uvm_test_top.~\

uvimn test to
—FESEEP = S [seat |

v
~ | seql

I a -agent

Renamed
to e2

New el

SYSTEMS INITIATIVE

6 of 30

Starti ng Vi rtual Seq uences Virtual sequences coordinate single-interface
)) sequences across multiple subsequencer handles
Typical - Uses Virtual Sequencer

| seql 2.start(el.vsqr) |

1

Requires vsequencer container uvm_test_top ~ | seql.start(a_sqr)
\ | seq2.start(c_sqgr)

- vsequencer declares subsequencer handles

* Environment stores relative subsequencer
paths in the vsequencer

 vseq.start (path_to_vsequencer)

- vseq base retrieves handles from vsequencer
* virtual-segs extend vseq base

* virtual-seqs started on subsequencer handles

Subsequencer
handles

* When vsequencer Or subsequencer locations
changes ...

paths_to_sequencers
must also be updated

. Q05

SYSTEMS INITIATIVE

FEBRUARY 24-27, 2025

(2025

DESIGN AND VERIEICATION ™

DVCOI

AAAAAAAAAAAAAA
222222222222222222

Sequencer Containers

Why Use Sequencer Containers?

Sequencer Container

Introduction Commonly used in
UVM testbenches

8 of 30

* Virtual sequencers served as traditional containers <«
— Virtual sequencers served as pseudo-config object «+———

Not hierarchically independent

Held handles to other sequencers

* Introducing Sequencer Containers «

Hierarchically independent

— Associative array(s) that map names to sequencer handles
— Designed as a container to hold sequencer handles
— Virtual sequences retrieve the sequencer handles by name

» Paper describes two sequencer container implementations

handle

al sqgr

llAl n
IICII

c_sqr
a2z sqgr

b sqgr

— Sequencer Pool (sgr pool) «

— | Sequencer Aggregator (sqr aggregator)

More advanced

SYSTEMS INITIATIVE

Singleton derived from uvm pool

<
<

Uses multiple associative arrays

\

Provides way to locate sequencer
handles singly or in groups

FEBRUARY 24-27, 2025

9 of 30

sqgqrs = sqr pool type::get global pool();

Starting Sequences

. e . "Al" = el.a agnt.sqgr 3 different tests use
New, Slmpler & Unified Technlque "Al" = etop.el.a agnt.sqgr same "A1" name
Sequencer Pool Same command "Al" = etop.e2.a agnt.sqgr but different paths

seql.start(s&rs.get(“Al")|

|seql.start(sqrs.get("Al")|
7

SN
seqgl.start (sgrs.get ("Al") y/uvm_test_top uvm_test top
= N

uvm test top etop

el
alagent

etop

(3) Tests start sequences on the
handle retrieved from sqr pool

Renamed
to e2

el
alagent

aJagent

(1) Agents return to environment: (2) Environments store handle at
full path to the current sqr location unique name location in sqr pool
No hard-coded paths!

Al
accellera DVECON

SYSTEMS INITIATIVE

rrrrrr

10 of 30

Starting Sequences Topic of this
.) presentation
Typical -vs- Improved Techniques

Typical Improved

named_sequencer handles are stored in a
sequencer container

Special associative array

* seqg.start (path_to _sequencer) * seqg.start (named _sequencer)
« When sequencer location changes ...| |+ When sequencer location changes ...
path_to_sequencer must — named_sequencer handle locations are
also be updated automatically updated
Continue to run on the same No modification
named_sequencer required

SYSTEMS INITIATIVE

11 of 30

Starti ng Vi rtual Seq uences Virtual sequences coordinate single-interface
. sequences across multiple subsequencer handles
Improved Technique - Uses sqr_pool

- named_sequencer handles are stored in a sequencer uvm_test top | seql.start(Al)
container seq2.start (C)

sqr pool

* seqg.start (named_sequencer)

These paths update
automatically

* When sequencer locations change ...

— named_sequencer handle locations are automatically
updated

el.a agnt.sqgr el.c agnt.sqgr

Continue to run on the same No modification
named_sequencer required

Sequencers

SYSTEMS INITIATIVE

(2025

DESIGN AND VERIEICATION ™

DVCOI

AAAAAAAAAAAAAA
222222222222222222

Sequencer Pool

sqr_pool

13 of 30

sqgr_pool Functionality
Introduction

o ; : .| Special associative array that can
Sequencer pool (sgr pool) is a sequencer container hold any sequencer handle

* sqr pool features:

— Singleton class derived from uvm_pool Much like UVM RAL uses register names
— Maps string names to sequencer handles ~——— | L I 9 U0 [LGN Ll et

The environment names and stores the
sequencer handles into the sqr pool

—I Has method to add () new sequencer handles to container

_ The sequence retrieves the sequencer
| Has method to get () any sequencer handle by name e Y et g

—I As a singleton, it is available to all virtual sequences No need to store handles
in a virtual sequencer

SYSTEMS INITIATIVE

sgr_pool Singleton Class

Extends uvm_pool Base Class

uvm pool is a UVM base class that
creates an associative array

T~

class uvm pool #(type KEY=int, T=uvm void) extends uvm object;
const static string type name = "uvm pool";
typedef uvm pool #(KEY,T) this type;

static protected this type m global pool;

14 of 30

protected T pool [KEY]; 1st 2nd
parameter parameter
class sqr pool #(type T=uvm sequencer base) extends uvm pool #(string,T);

sqgr_pool is an extension of uvm pool
* indexed by KEY=string
-and uses -
* type T=uvmn_sequencer base

SYSTEMS INITIATIVE

Why not use a parameterized version
of the uvm pool base class ??

15 of 30
UVM Base Class: uvm_pool
Extend uvm_pool to create sqr_pool

uvm_pool base class defines an associative array with:
type KEY int «—— | type KEY string

type T uvm void «— | type T uvm sequencer base

* uvin pool «~— | Required: two methods uvm_pool actions sqgr_pool actions
i should be modified
get ()

— returns the item with the given key -or- “~— |

— creates a new item if one does not exist +——| | Creates null item at that
. -
add () location (*BAD!*)

A

—{ At the given KEY location Same

A

“uvm fatal **

A

Same

— Adds the given item to the associative array «{—| At the given XKEY location
— AND quietly overwrites the contents — |

If there is already an item
at that location (*BAD!")

|

A

“uvm_ fatal **

** Nothing good

accellera

SYSTEMS INITIATIVE

sqgr_pool (Part 1 of 3)

accellera

SYSTEMS INITIATIVE

16 of 30

class sqr pool #(type T=uvmm sequencer base) extends uvm pool #(string,T):;

typedef sqr pool #(T) this type; <

static protected this type m global pool;

Defines a sqr pool type parameterized
to the uvm sequencer base type

All sequencers are derivatives of
the uvim _sequencer base

protected function new (string name="") ;
super .new (name) ;
endfunction

static function this type get global pool();
if (m global pool==null)
m global pool = new("pool");
return m global pool;
endfunction

Any parameterized sequencer can
be added to the sqr pool

Constructs and returns the
m global pool singleton handle

static function T get global (KEY key):;
this type gpool;
gpool = get global pool();
return gpool.get (key) ;
endfunction

DESIGN AND \g\mnlom -

DVCON

CONFERENCE AND EXI

17 of 30

sq r_pOOI (Part 2 Of 3) Returns a handle of a parameterized sequencer stored

as a uvm sequencer base in the sqr pool
|

The sequencer handle stored at the

virtual function T get (string key):;

if (pool.exists(key)) return poollkeyl; key-string location in the sqr pool
else begin —
dump () ;
“uvm fatal ("SQR POOL", < If no handle is stored at the
$sformatf ("No pool entry exists for sqr name %s", key)) keylocaﬁon:“uvm_fatal
end
endfunction add a sequencer handle to the sqr pool

virtual function void add(string key, uvm sequencer base item);
if(key != "") begin -
If there is already a handle stored

if (pool.exists (key)) :
4_ / at the key location : "uvm fatal

“uvm_ fatal ("SQR POOL",
$sformatf ("Duplicate name table entry: name %s", key))

pool [key] = item;
end $\\\\\\‘\\\\\\
Store a sequencer handle at the

df ti . . .
endiunction key-string location in the sqr pool

DESIGN AND \g\mnlom -

DVCON

SYSTEMS INITIATIVE

sSqr_

pool (Part 3 of 3)

18 of 30

I

dump () a concise list of the named
sequencers in the sqr pool

virtual function void dump () ;
$display ("\n--- SEQUENCER POOL ENTRIES -----

foreach (pool [name]) begin

uvm_ sequencer base sgr = pool [name];

foreach loop walks through each sqr pool
entry and prints its name and full-path

Swrite ("%$10s : ", name);
$display ("%s", sgr.get full name());
end
$display("--- END SEQUENCER POOL = -------
endfunction
endclass

SYSTEMS INITIATIVE

DESIGN AND VgIE[:A:ION n

DV

CONFERENCE AND EXHIBITION

19 of 30

Agent & Environment
Preview

function uvm sequencer base get sequencer();
return sgr;
endfunction Each agent includes a get sequencer () method

Returns full path to sequencer, no matter
where it exists in a UVM testbench

function void get sequencers();
sgrs.add("Al", a agnt.get sequencer());
sgrs.add("C", c_agnt.get sequencer());

endfunction
Each environment includes a get sequencers () method
Unique names - Calls each agent's get sequencer () method and adds the
index into sqr pool sgr-handle to the sqr pool (sgrs) with a unique name

The environment's location does not matter

SYSTEMS INITIATIVE

nnnnnnn

20 of 30

Agent Code

class a agent extends uvm component;

Returns Sequencer Handle “uvm_component utils(a_agent)
The agent does not need to a driver drv;
know about the sqr pool a sequencer sgr;

function new(string name, uvm component parent); ...

function void build phase(uvm phase phase);

drv = a driver::type id::create("drv", this);
sqr = a sequencer::type id::create("sqr", this);
endfunction

function void connect phase(uvm phase phase);
drv.seq item port.connect(sqgr.seq item export) ;
endfunction

Each agent includes a
get sequencer () method

v

virtual function uvm sequencer base get sequencer() ;

return sqgr;
endfunction Returns full path to sequencer, no matter

endclass where it exists in a UVM testbench

DVCON

SYSTEMS INITIATIVE

21 of 30

EnVironment COde class envl extends uvm env;
Names & Stores Handles “uvm_component utils (envl)

typedef sqr pool #(uvm sequencer base) sqr pool type;

P
//// a_agent a_agnt;

Each environment retrieves the c_agent c_agnt;
sqr pool singleton » sqr_pool type sgrs = sqr pool type::get global pool() ;

function new(string name, uvm component parent); ...

function void build phase(uvm phase phase);

a agnt = a agent::type id::create("a agnt", this);
¢ _agnt = c agent::type id::create("c agnt", this);
endfunction

function void connect phase(uvm phase phase);
get sequencers() ;
endfunction

Each environment calls the
get sequencer () method [—__ |

for each agent T

id get sequencers();
The returned agent-sqr handles are agnt.get sequencer());
added to the sqr pool sgrs.add("Cc" \ c_agn®.get sequencer());

ﬂi’ﬂ&llﬂi’d ’ endfunction ™~
endclass These names must be unique in the sqr pool

SYSTEMS INITIATIVE

22 of 30

Test Base Code |

class test base extends uvm test; First get global pool () call
b t utils(test b q — -
Declare & Create sqr_pool uvm component utils(test base) will create the sqr pool
. typedef sqr pool #(uvm sequencer base) sqr pool type;

////////////’ uvm factory factory = uvm factory::get();
Declares & creates env_top e_top;

sqgr pool singleton sqgqr pool type sgrs = sqr pool type::get global pool() ;

v

function void start of simulation phase (uvm phase phase);
super.start of simulation phase(phase);

Pre-run: display the following: if (uvm report enabled(UVM HIGH)) begin

 testbench structure » this.print () ;

» contents of factory » factory.print () ; \

* dump () the contents of » sqrs.dump () ; '& Printing happens with command line:
the sqr_pool end +UVM VERBOSITY=HIGH (or higher)

endfunction

function void final phase(uvm phase phase); ///
» if (uvm report enabled(UVM HIGH)) sgrs.dump();
endfunction

endclass

At end of simulation: dump ()
the contents of the sqr pool

SYSTEMS INITIATIVE

vseq_base Code
Sets Sequencer Handles

Declares & retrieves the | — |

23 of 30

sqgr pool singleton handle

Sequencer handles declared to be
of type uvm sequencer base

—

Retrieve the handles stored

__» uvin_sequencer base Al;
—> uvmn_sequencer base A2;
— uvm_sequencer base B;
— uvm_ sequencer base C;

super .new (name) ;
endfunction

in sgrs (the sqr pool)

Assign the retrieved handles to |
the handles declared above [

tm

— Al sgrs.get ("Al") ;
— A2 sgrs.get ("A2") ;
— B = sgrs.get("B");
> C = sgrs.get("C");
endtask

endclass

class vseq base extends uvm sequence #(uvm sequence item);
“uvm object utils(vseq base)

typedef sqr pool #(uvm sequencer base) sqr pool type;

» sqgr pool type sgrs = sqr pool type::get global pool() ;

function new(string name = "vseq base");

MARK TODO: Should this be get handles ()
instead of body () task ??

These names were assigned
by the environment

(2025

DESIGN AND VERIEICATION ™

DVCOI

AAAAAAAAAAAAAA
222222222222222222

Sequencer Aggregator

sqr_aggregator

Sequencer Aggregator o

Advanced Sequencer Container -« Hierarchically independent

Created during build and connect phases

- Sequencer Aggregator (sqr aggregator)

« Advanced sequeW Multiple sqr aggregators possible

— Nota Smgleton < Allows for multiple domains & namespaces
— Can aggregate a collection of sequence handles

— Has multiple associative arrays « Associative arrays indexed by string type

class sqr aggregator;
typedef uvm sequencer base sqgr g t[$];

local uvm sequencer base sqgr table [stringl];
local uvm sequencer base name table[string];
local sqgr g t kind tablel[string];

Stores sequencer
handles differently

3 A A

SYSTEMS INITIATIVE

26 of 30

sqgr handle

Sequencer Aggregator - add()/

function void add(uvm sequencer base sqgr, string name, string kind);

sqr_q_t q;
string path = sqgr.get full name(); Sequencer handles can be stored by:
sqr table[path] = sqr; (1) handle-path

(2) user-defined kind (string)
if(kind != "") begin (3) name (string)

if (kind table.exists(kind))
q = kind tablel[kind];
g.push back(sqr);
kind tablel[kind] = q; «
end

kind table enables access to groups
of sequencers by assigned kind

if (name != "") begin
if (name table.exists (name))
“uvm_info ("SQR AGGREGATOR",
$sformatf ("replacing sequencer with name %s", name),

UVM NONE) R :
— Associative array indexed by
name table[name] = sqgr; < j
- user-chosen name (string)
end
endfunction

SYSTEMS INITIATIVE

27 of 30

Aggregator - lookup Methods (Part 1 of 2)

function uvm sequencer base lookup path(string path);

if (sqr table.exists(path)) “\-\\\\\\\\\\\\\
return sqr table[path]; — | Lookup by sqgr path

else from the sqr table
return null;
endfunction

function uvm sequencer base lookup name (string name) ;

if (name table.exists (name)) *“‘“*--\\~\\\\‘
- \

return name table[name]; Lookup by string name
else from the name table

return null;
endfunction

ll DESIGN AND i
CONFERENCE AND EXHIBITIGN
resR 2

SYSTEMS INITIATIVE

28 of 30

Aggregator - lookup Methods (Part 2 of 2)

function sqr g t lookup path regex(string regex);

sqr_ q t q = {}: ‘\
foreach(sqr_table[path]) begin | Lookup by sqr regular expression

if (uvim_re match(regex, path)) path from the sqr table
g.push back(sqr table[pathl]);
end
return qg;
endfunction

function sqr g t lookup kind(string kind);

return kind table[kind]; *"-—-——________“_“§“~‘_
endfunction — Lookup by string kind

from the kind table

DESIGN AND VgIE[:A:ION n

BVEON

SYSTEMS INITIATIVE

_ 29 of 30
Conclusions

Sequencer Containers Simplify UVM Testbenches
Common / old style Makes reuse difficult

« Virtual sequencers|are not hierarchically independent<‘i Makes debug difficult!

 Sequencer containers gliminate virtual sequencer Makes accessing sequencers
deficiencies hierarchically independent

« Two sequencer containers described in this presentation
— sgr_pool < Singleton and simple to use

— 8dgr aggregator
< Allows multiple containers for advanced

UVM testbench environments
— Add get sequencer () method to every agent <\

— Add get sequencers () method to every environment <« |

Enables sequencer container usage

Let environment name the sequencer handles

» Sequencer containers simplify and unify sequence
execution

Tests can execute sequences & virtual sequences using a
common technique that reduces usage mistakes

SYSTEMS INITIATIVE

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 24-27, 2025

Questions?

SYSTEMS INITIATIVE

(2025

DESIGN AND VERIFICATION ™

2RI\
Dv ‘ P b 1 N Life is too short for bad

CONFERENCE AND EXHIBITION or boring training!

SAN JOSE, CA, USA
FEBRUARY 24-27, 2025

Sequencer Containers - A Unified and Simple Technique
to Execute Both Sequences and Virtual Sequences

Clifford E. Cummings Mark Glasser
Paradigm Works, Inc. Paradigm Works, Inc.

_‘ PARADIGM"®
WORKS

,‘ PARADIGM'*

wo R KS SYSTEMS INITIATIVE

