
Verifying RO registers: 

Challenges and the solution 
 

Ivana Dobrilovic 

Veriest Solutions 

Belgrade, Serbia 

ivanad@veriests.com 

 
Abstract-The role of registers in hardware is to be a programming interface to the software. They provide the static 

information about the design, allow controlling the behavior or features of the design, and provide the ability for the 

software to figure out if the design is performing the operation as expected or if it needs some attention. Registers can be 

classified based on several criteria. Based on their function, they can be broadly divided into 3 categories: information, 

control, and status registers. There is also a division based on the type of access. The most common types are "RO" (read-

only), "RW" (read-write) and "WO" (write-only). A read-only register is a special type of register that can only be read 

by the software. These registers are typically used for things such as status registers, certain control registers, hardware 

timers, and counters. Verification of a read-only register is typically tricky. This paper will describe the most common 

problems that can be encountered, as well as the solution. 

 

I. INTRODUCTION 

 Considering that hardware behavior is configurable and monitored through registers, it is not surprising that 

verifying them has become one of the primary tasks in chip development. And taking into account a large number of 

registers in today's designs and their dynamic nature, that is a very difficult and challenging process. Read-only 

registers, such as status registers, debug registers and counters, are especially problematic in this sense.  

Basic implementation correctness (ability to access all the registers, correctness of all access types for different 

fields, the post-reset values matching the expectation) is typically verified by a single test exercising only that. The 

more challenging area is verifying the functional correctness of registers. For most of the registers, functional 

correctness is spread out across many tests. Those tests are focusing on the verification of a higher-level operation, 

but while doing that they use different registers. Hence, although it’s not their main purpose, they verify registers 

indirectly. 

Status registers, as an example of read-only registers, provide reports for various hardware events to the software. 

Some examples are interrupt status, error status, link operational status, FSM status, faults etc. Considering the 

importance of this functionality, the goal is to make sure these registers have the correct value at any time. The most 

convenient way to achieve that is to check their value occasionally. There are two aspects of the strategy for this 

verification task. The first one is related to the sequence. The recommendation is to add a sequence for registers 

polling that will run in parallel to the main test sequence. This sequence will initiate registers read transactions at 

random moments. The other aspect is the checking itself. That should be implemented in a common object that 

serves as a reference model, scoreboard, or some hierarchically lower instances. And actually, that is the challenging 

part. 

II. CHALLENGES 

In order to implement a checker for a specific register or a register field, one should have an expected register 

value reliably predicted. For a verification engineer that is sometimes hard to achieve if he considers DUT a black 

box as he is supposed to. There are cases when it is impossible to know the timings of some DUT internal events 

without looking at internal signals.  

There are several problematic scenarios. All of them suggest that checkers have to be made more flexible and that 

there cannot be a single expected value, but rather a pool of them. The aim of this chapter is to explain those 

situations in more details and to give suggestions for each specific case how to add flexibility to the checkers. 

 

A. Register value changes to fast 

A problem that can be encountered with counter registers or some other statistic registers is that their value is 

changed too fast in relation to the bus transaction cycle.  

B. Read cycle duration 

Another issue that one can encounter trying to check register value at a random time is a huge time gap between 

the command and response phase on the interface itself. For instance, the DUT might be implemented to drive back 

read data as soon as it gets the command, but the verification testbench will get that data only after the response 



phase is completed (master accepted the read data). And the bus protocol might allow long response latency. During 

that gap, the expected register value might change several times and one cannot be sure which value would 

correspond to the actual bus transaction. 

Figure 1 shows how COUNTER_X value changes during single read register transaction cycle. This counter does 

not even count on every clock cycle but on CNT_PULSE, whose frequency is much lower than the clock frequency. 

Still, it changes value two times while waiting on read response.  

 

 
Figure 1. Counter values during one cycle of register read transaction.  

 

C.  Registers containing fields of various types 

For registers fields that are 1 bit wide there is not room for any flexibility in checking since such field can have 

only one correct value. 

Figure 2 is an example of how a 1-bit field (STATUS_20) of interrupt status register changes its value during a 

single register read cycle. 

 

 
Figure 2. 1bit width status filed values during one cycle of register read transaction.  

 

Also, there are status registers that contain fields of different access types and functionality. Value of each field in 

such register can be changed in the different state of the DUT i.e. on different events, state machine transitions, 

responses to outside requests, results of some calculations, etc. Therefore, these fields should be tested 

independently of each other.  

D.  Common race condition between ENV and DUT 

Problem caused by long read response latency should be clear by now. However, even small latency can make 

race condition between expected and observed read value i.e. to make a prediction of the exact value impossible. 

That is explained using Figures 3 and 4. Value of COUNTER_X changes during the read transaction cycle even 

though response comes very quickly.  

Figure 3 shows a non-problematic scenario. In this case, a value of COUNTER_X is changed at the beginning of the 

read transaction cycle which allows the read operation to catch the actual value of the counter (COUNTER_X and 

READ_DATA have the same value, ‘h24E). 

Figure 4, on the other hand, represents how easily this can go wrong. Here the counter value is updated one clock 

cycle later and that results in read operation catching the old counter value (READ_DATA picks up the old 

CONTER_X value which is ‘h1DB, while the actual COUNTER_X value is ‘h1DA).  



 

 
Figure 3. Counter values during one cycle of register read transaction.  

 

 

 
Figure 4. Counter values during one cycle of register read transaction.  

 
 

III. SOLUTION IMPLEMENTATION 

Since it is impossible to accurately predict expected value and create reliable checker based on it, a certain 

flexibility has to be added to the checker, as already mentioned. The best approach is to to determine the necessary 

and sufficient level of flexibility in the beginning. If you start from a strict checker and then try to introduce 

modifications, that will make the code less readable and hard to maintain.       

This paper suggests a single solution that covers different read-only register types and most of the problematic 

situations in their verification. Solution relays on the fact that expected value of the register field could be only 

approximately predicted. Also, the solution takes care of all possible values and their transition order since that can 

be of a great importance. 

The solution mechanism requires 3 variables per register or register field in the reference model: 

• A field that will store an expected value, 

• A flag that will signal if register reading is ongoing, 

• A queue that will store all expected values created while the register reading was ongoing. 

The idea is to collect all the expected register values during the read transaction targeting the specific register. 

Once the transaction is completed, the checker will verify if the actual register value matches any of the expected 

values from the queue. 

There is an example represented through code pieces in the figures bellow that helps explaining the solution in 

more details. In the example BLOCK1 is a registers block, REG1 is a register and StatusA is one its field. The field 

StatusA is FAW bits wide.  

Figure 5 shows the declaration of all variables needed for the solution implementation. The fields being declared 

are the following: 

• reg1_read_ongoing - the flag that will signal if register reading is ongoing, 



• reg1_statusA - the variable that will store an expected value, 

• reg1_statusA_1 - the queue that will store all expected values created while the register reading was 

ongoing. 

 

class model extends uvm_component; 

     

    ................................... 

    //BLOCK1 declaration  

    block1_regs BLOCK1;     

     

    //Status register check fileds 

    bit                     reg1_read_ongoing; 

    bit [FAW-1:0]           reg1_statusA; 

    bit [FAW-1:0]           reg1_statusA_q[$]; 

    ................................... 

 

endclass  
Figure 5. Variables declaration 

 

The expected value is calucalted based on the DUT functionality. That calculation is here represented by a method 

calculate_reg1_statusA() that is implemented in the reference model and shown in the Figure 6. This method runs 

all the time in the reference model, in parallel with everything else. The calculation itself is triggered by an event 

defined in the specification for the specific register field. Once triggered it calculates the expected value for that 

register field (valueA) and afterwards stores that value in  reg1_statusA, a variable that is part of our solution 

mechanism. If reading of that register is ongoing, it also pushes the predicted value to the queue reg1_statusA_q. As 

already explain, the queue is actually the pool of the expected values which enables flexibility in checking the 

register field value. 

 

function model::calculate_reg1_statusA(); 

    // ... calculation ...     

 

    ................................... 

    // valueA is the calculated value  

    // and it is assigned to expected reg1_statusA 

    reg1_statusA  = valueA; 

 

    // Putting calculated value in a pull of expected value  

    // in case that read is ongoing.  

    if (reg1_read_ongoing == 1)begin 

        reg1_statusA_q.push_back(reg1_statusA); 

    end 

endfunction 

 
Figure 6. calculate_reg1_statusA 

 

Registers are accessed using protocol X. Monitor of the agent X reports transaction using TLM analysis port. 

Implementation of the TLM analysis port write() method is done in the reference model and shown in Figure 7. 

Basically, once a start of a read operation for a specific register is detected, the flag which says that the read 

operation is ongoing is set and the expected value of the register field at that moment is pushed to the queue. This is 



the first expected value calculated during the read register cycle. For all other potential changes of the register field 

value that might happen until the end of the read operation, pushing to the queue will be done by 

calculate_reg1_statusA() method. 

 

function model::write_X(X_seq_item tr); 

        ................................... 

        if(tr.phase == START && tr.direction == READ ) begin  

        //Read operation started  

        //Start collecting expected possible values for read data 

        if (tr.address  == BLOCK1.REG1.get_address() ) begin 

            reg1_read_ongoing = 1; 

            reg1_statusA_q.push_back(reg1_statusA); 

        end 

endclass  
Figure 7. X Write method implementation on starting phase 

 

When X monitor reports the end phase of the transaction, it provides full information about that transaction, 

including the read data. Usually, the read data would be checked against the single expected data, but the solution 

from this paper suggests checking if the actual read data matches any element in the queue of expected values 

reg1_statusA_q(). If there is a match, the functionality is considered correct. If not, the reference model issues an 

error indication. This is shown in Figure 8. 

 

function model::write_X(X_seq_item tr); 

    ................................... 

    if(tr.phase == END && tr.direction == READ ) begin  

        //Read operation ended  

        //Compare the read data against the queue elements 

        if (tr.address  == BLOCK1.REG1.get_address() ) begin 

            //check REG1 field 

            if(tr.rdata inside {reg1_statusA_q})begin 

                `uvm_info("reg1_statusA_check", 

                         $sformatf("REG1 read:  

                                    Observed rdata has correct value"),UVM_LOW); 

            end else begin  

                `uvm_info("reg1_statusA_check", 

                         $sformatf("REG1 read - Observed mismatch: 

                                   read data %0x, expected values %p",  

                                   tr.rdata, reg1_statusA_q)); 

            end  

 

            reg1_read_ongoing = 0; 

            reg1_statusA_q.delete();                         

        end 

    end 

endfunction 
Figure 8. X Write method implementation on ending phase 

 



The same approach should be taken when there are multiple fields in the register. That is shown in Figure 9. 

Fields can have different trigger event, width, access policy.  

  

class model extends uvm_component;     

    ...................................     

    //BLOCK1 declaration  

    block1_regs BLOCK1;     

     

    //Status register check fileds 

    bit                     reg1_read_ongoing; 

    bit [FAW-1:0]           reg1_statusA; 

    bit [FAW-1:0]           reg1_statusA_q[$]; 

 

    bit [FBW-1:0]           reg1_statusB; 

    bit [FBW-1:0]           reg1_statusB_q[$]; 

    bit                     reg1_statusC; 

    bit                     reg1_statusC_q[$];     

    ................................... 

endclass  
Figure 9. Multiple number of fields under check  

 

In this case, write_X() function implementation looks like in Figure 10. 

 

 function model::write_X(X_seq_item tr); 

    ................................... 

    if(tr.phase == START && tr.direction == READ ) begin  

        //Read just started  

        //Start collecting expected possible values of read data 

        if (tr.address  == BLOCK1.REG1.get_address() ) begin 

            reg1_read_ongoing = 1; 

            reg1_statusA_q.push_back(reg1_statusA); 

            reg1_statusB_q.push_back(reg1_statusB); 

            reg1_statusC_q.push_back(reg1_statusC); 

        end 

    end 

    ................................... 

    if(tr.phase == END && tr.direction == READ ) begin  

        //Read just started  

        //Start collecting expected possible values for read data 

        if (tr.address  == BLOCK1.REG1.get_address() ) begin 

            //check REG1 field 

            if(tr.rdata inside {reg1_statusA_q})begin 

                `uvm_info("reg1_statusA_check", 

                          $sformatf("REG1 read:  

                                     Observed rdata has correct value"),UVM_LOW); 

            end else begin  



                `uvm_info("reg1_statusA_check", 

                         $sformatf("REG1 read - Observed mismatch: 

                                   read data %0x, expected values %p",  

                                   tr.rdata, reg1_statusA_q)); 

            end  

            if(tr.rdata inside {reg1_statusB_q})begin 

                `uvm_info("reg1_statusB_check", 

                          $sformatf("REG1 read:  

                                     Observed rdata has correct value"),UVM_LOW); 

            end else begin  

                `uvm_info("reg1_statusB_check", 

                         $sformatf("REG1 read - Observed mismatch: 

                                   read data %0x, expected values %p",  

                                   tr.rdata, reg1_statusB_q)); 

            end  

            if(tr.rdata inside {reg1_statusC_q})begin 

                `uvm_info("reg1_statusC_check", 

                          $sformatf("REG1 read:  

                                     Observed rdata has correct value"),UVM_LOW); 

            end else begin  

                `uvm_info("reg1_statusC_check", 

                         $sformatf("REG1 read - Observed mismatch: 

                                   read data %0x, expected values %p",  

                                   tr.rdata, reg1_statusC_q)); 

            end  

 

            reg1_read_ongoing = 0; 

            reg1_statusA_q.delete(); 

            reg1_statusB_q.delete(); 

            reg1_statusC_q.delete();                         

        end 

    end 

endfunction 
Figure 10. Multiple fields under check 

 

As those fields can change their value on different trigger events, prediction of their values should be done 

separately in reference model. That can be seen in Figure 11. 

 

function model::calculate_reg1_statusA();     

    ................................... 

    // valueA is the calculated value and it is assigned to expected reg1_statusA 

    reg1_statusA  = valueA; 

 

    // Putting calculated value in a pull of expected value  

    // in case that read is ongoing.  

    if (reg1_read_ongoing == 1)begin 



        reg1_statusA_q.push_back(reg1_statusA); 

    end 

endfunction 

 

function model::calculate_reg1_statusB();     

    ................................... 

    // valueB is the calculated value  

    // and it is assigned to expected reg1_statusB 

    reg1_statusB  = valueB; 

    // Putting calculated value in a pull of expected value  

    // in case that read is ongoing.  

    if (reg1_read_ongoing == 1)begin 

        reg1_filedB_q.push_back(reg1_statusB); 

    end  

endfunction 

 

function model::calculate_reg1_statusB();     

    ................................... 

    // valueC is the calculated value  

    // and it is assigned to expected reg1_statusC 

    reg1_statusC  = valueC; 

    // Putting calculated value in a pull of expected value  

    // in case that read is ongoing.  

    if (reg1_read_ongoing == 1)begin 

        reg1_filedC_q.push_back(reg1_statusC); 

    end  

endfunction 
Figure 11. Fields prediction methods 

 

In addition to suggested solution, it is very important to implement coverage point where only one expected value 

was in the expected queue to prove that exact register/field value was checked, as shown in Figure 10.   

 

function model::write_X(X_seq_item tr); 

    ................................... 

    if(tr.phase == END && tr.direction == READ ) begin  

        //Read just started  

        //Start collecting expected possible values for read data 

        if (tr.address  == BLOCK1.REG1.get_address() ) begin 

            //check REG1 field 

            if(tr.rdata inside {reg1_statusA_q})begin 

                `uvm_info("reg1_statusA_check", 

                          $sformatf("REG1 read:  

                                     Observed rdata has correct value"),UVM_LOW); 

            end  

            else begin  

                `uvm_info("reg1_statusA_check", 



                         $sformatf("REG1 read - Observed mismatch: 

                                   read data %0x, expected values %p",  

                                   tr.rdata, reg1_statusA_q)); 

            end  

 

            model_cov.reg1_statusA_cg.sample(reg1_statusA_q.size()); 

 

            reg1_read_ongoing = 0; 

            reg1_statusA_q.delete();                         

        end 

    end 

endfunction 
Figure 11. Checks with reference to coverage 

 

Speaking of coverage, reg1_statusA_cg cover group is implemented to cover size of the reg1_statusA_q 

distinguishing queue size of 1. 

 

IV. CONCLUSIONS 

Today almost every block in an electronic design contains a series of registers. On top of that, register 

functionality evolves throughout the project execution. Considering the total number of registers and their dynamic 

nature, verifying them became one of the most challenging tasks in chip development process. This paper is inspired 

by many issues encountered in practice. It aimed to provide comprehensive descriptions of all problematic 

situations, as well as detailed explanation of the suggested solution. Implementation of the complete flow is done 

using System Verilog, UVM methodology with regards to the UVM register model [1]. 

 

REFERENCES 
[1]  IEEE 1800.2-2020 Standard for Universal Verification Methodology 


