
Verifying RO registers:
Challenges and the solution

Ivana Dobrilovic

Veriest Solutions

ivanad@veriests.com

Agenda

• Registers – role and types

• RO registers’ verification challenges

• Suggested solution

• Conclusion

Registers – role and types

• HW configuration, control and monitoring(debug).

• Registers classification
• Function that serves for

• Access type

• Registers verification
• Basic register test

• Checking functional correctness

RO Registers and their verification

• Status and debug registers, HW timers and counters

• Interrupt status, error status, link operational status, FSM status,
faults

• Check their value occasionally

• Two aspects of the strategy
• Register polling sequence – when to read register?

• Checking – where to check its value?

• Complex verification task

Challenges

• Having expected register value reliably predicted

• Checker relaxation

• Challenges
• Register value changes too fast

• Read cycle duration

• Registers containing fields of various types

Challenges - examples

• Register value changes

• Read transaction cycle – Long response latency

Challenges - examples

• Checking interrupt status register fields

• 1-bit field (STATUS_20) of interrupt status register changes its value
during a single register
read cycle

The most challenging part

Solution

• Having common approach covers several issues

• Expected register/field value approximately predicted

• Pool of all possible values in the given time

Solution - Example

• StatusA - uvm_reg_field

• REG1 - uvm_reg

• BLOK1 – uvm_reg_block

• Register protocol - Protocol X

• Model - common UVM object where checking is done

Solution mechanism - Declaration

• Register block declaration

• 3 variables per register or
register field in the
reference model

• The idea is to collect all
the expected register
values during the read
transaction targeting the
specific register

class model extends uvm_component;

 //BLOCK1 declaration

 block1_regs BLOCK1;

 //Status register check fields

 bit reg1_read_ongoing;

 bit [FAW-1:0] reg1_statusA;

 bit [FAW-1:0] reg1_statusA_q[$];

endclass

Solution mechanism - Queueing
• calculate_reg1_statusA()

• Value calculation

• Queueing - pool of the
expected values which
enables flexibility in
checking the register field
value

function model::calculate_reg1_statusA();

 // valueA is the calculated value

 // and it is assigned to expected reg1_statusA

 reg1_statusA = valueA;

 // Putting calculated value in a pull of expected values

 // in case that read is ongoing.

 if (reg1_read_ongoing == 1)begin

 reg1_statusA_q.push_back(reg1_statusA);

 end

endfunction

Solution mechanism – Register read start

• write_X()

• Indicating that REG1 read
starts

• Queueing current value
predicted for statusA field

function model::write_X(X_seq_item tr);

 if(tr.phase == START && tr.direction == READ) begin

 //Read operation started

 //Start collecting expected possible values for read data

 if (tr.address == BLOCK1.REG1.get_address()) begin

 reg1_read_ongoing = 1;

 reg1_statusA_q.push_back(reg1_statusA);

 end

endclass

Solution mechanism – Register read end

• write_X - end phase

• Data checking

• Ongoing flag reset

• Deleting a queue

function model::write_X(X_seq_item tr);

 if(tr.phase == END && tr.direction == READ) begin

 //Read operation ended

 //Compare the read data against the queue elements

 if (tr.address == BLOCK1.REG1.get_address()) begin

 //check REG1 field

 if(tr.rdata[FAW-1:0] inside {reg1_statusA_q})begin

 `uvm_info("reg1_statusA_check",

 $sformatf("REG1 read:

 Observed rdata has correct value"),UVM_LOW);

 end else begin

 `uvm_info("reg1_statusA_check",

 $sformatf("REG1 read - Observed mismatch:

 read data %0x, expected values %p",

 tr.rdata, reg1_statusA_q));

 end

 reg1_read_ongoing = 0;

 reg1_statusA_q.delete();

 end

 end

endfunction

Solution mechanism – multiple fields checking

• Same approach for more
different fields of the
same register

• Common register
ongoing flag

• Fields and field queues
for each field separately

• Start queueing predicted
values for each fields

 //Status register check fields

 bit reg1_read_ongoing;

 bit [FAW-1:0] reg1_statusA;

 bit [FAW-1:0] reg1_statusA_q[$];

 bit [FBW-1:0] reg1_statusB;

 bit [FBW-1:0] reg1_statusB_q[$];

 bit reg1_statusC;

 bit reg1_statusC_q[$];

 if(tr.phase == START && tr.direction == READ) begin

 //Read just started

 //Start collecting expected possible values of read data

 if (tr.address == BLOCK1.REG1.get_address()) begin

 reg1_read_ongoing = 1;

 reg1_statusA_q.push_back(reg1_statusA);

 reg1_statusB_q.push_back(reg1_statusB);

 reg1_statusC_q.push_back(reg1_statusC);

 end

 end

Solution mechanism – multiple fields checking

• Read data slices will be
check against expected
queues

 if(tr.phase == END && tr.direction == READ) begin

 //Read just started

 //Start collecting expected possible values for read data

 if (tr.address == BLOCK1.REG1.get_address()) begin

 //check REG1 field

 if(tr.rdata[A_MSB:A_LSB] inside {reg1_statusA_q})begin

 `uvm_info("reg1_statusA_check",

 $sformatf("REG1 read:

 Observed rdata has correct value"),UVM_LOW);

 end else begin

 `uvm_info("reg1_statusA_check",

 $sformatf("REG1 read - Observed mismatch:

 read data %0x, expected values %p",

 tr.rdata[A_MSB:A_LSB], reg1_statusA_q));

 end

 if(tr.rdata[B_MSB:B_LSB] inside {reg1_statusB_q})begin

 `uvm_info("reg1_statusB_check",

 $sformatf("REG1 read:

 Observed rdata has correct value"),UVM_LOW);

 end else begin

 `uvm_info("reg1_statusB_check",

 $sformatf("REG1 read - Observed mismatch:

 read data %0x, expected values %p",

 tr.rdata[B_MSB:B_LSB], reg1_statusB_q));

 end

 if(tr.rdata[C_POS] inside {reg1_statusC_q})begin

 `uvm_info("reg1_statusC_check",

 $sformatf("REG1 read:

 Observed rdata has correct value"),UVM_LOW);

 end else begin

 `uvm_info("reg1_statusC_check",

 $sformatf("REG1 read - Observed mismatch:

 read data %0x, expected values %p",

 tr.rdata[C_POS], reg1_statusC_q));

 end

 reg1_read_ongoing = 0;

 reg1_statusA_q.delete();

 reg1_statusB_q.delete();

 reg1_statusC_q.delete();

 end

 end

Solution mechanism – Coverage

• coverage point to prove that exact register/field value was checked

• cover the size of the reg1_statusA_q distinguishing queue size of 1

Conclusion – why this solution is good

• Common solution for one of the most challenging tasks in chip
development process

• Starts with flexible checker instead of exact one

• More readable and easy to maintain code

• Idea that could be easily adopted to other issues

Q&A?

Thank you for your attention!

	Slide 1: Verifying RO registers: Challenges and the solution
	Slide 2: Agenda
	Slide 3: Registers – role and types
	Slide 4: RO Registers and their verification
	Slide 5: Challenges
	Slide 6: Challenges - examples
	Slide 7: Challenges - examples
	Slide 8: The most challenging part
	Slide 9: Solution
	Slide 10: Solution - Example
	Slide 11: Solution mechanism - Declaration
	Slide 12: Solution mechanism - Queueing
	Slide 13: Solution mechanism – Register read start
	Slide 14: Solution mechanism – Register read end
	Slide 15: Solution mechanism – multiple fields checking
	Slide 16: Solution mechanism – multiple fields checking
	Slide 17: Solution mechanism – Coverage
	Slide 18: Conclusion – why this solution is good
	Slide 19: Q&A?
	Slide 20: Thank you for your attention!

