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 Abstract--  Mobile  System-on-Chip  (SoC)  devices  have  entered  an  era  of 
 unprecedented  complexity,  driven  by  the  exponential  growth  in  hardware  capabilities 
 within  smartphones  and  other  portable  devices.  The  increased  demand  to  support 
 complex  and  high  performance  features  in  the  current  smartphones  has  prompted  the 
 integration  of  compute  engines  like  GPUs,  multicore  CPUs  and  other  Machine  Learning 
 processing  units  in  the  mobile  chips.  This  substantially  surged  the  performance  demands 
 placed  on  the  mobile  devices  making  performance  verification  an  increasingly  critical 
 endeavor  in  addition  to  the  functional  verification.  In  this  paper,  we  address  two  critical 
 aspects  of  efficient  and  scalable  performance  verification  through  our  proposed  AI 
 algorithm  flow.  We  streamline  stimulus  generation  and  optimize  the  simulation  time  of  a 
 usecase  by  running  only  a  subset  that  is  representative  of  the  entire  usecase.  We 
 leverage  the  same  algorithm  to  analyze  and  characterize  performance  failures, 
 significantly expediting the debugging process. 

 I Introduction 

 Performance  issues  in  SoCs  often  exhibit  a  cascading  effect  wherein  a  throughput  bottleneck  in  one  IP  at 
 a  specific  time  instance  might  impact  a  different  IP  at  a  distinct  time.  This  complexity  requires  a  multi-level 
 approach  to  problem  solving  from  IP  level  testing  to  post  silicon  validation.  Performance  analysis  in  the 
 SOC  domain  gauges  resource  utilization  including  but  not  limited  to  meeting  throughput  and  latency 
 requirements.  The  complexity  arises  due  to  multiple  operating  points,  multiple  clock  frequencies,  multiple 
 initiator  and  target  interfaces  on  both  datapath  and  control  path  and  other  factors  impacting  performance 
 like  quality of service (QoS), arbitration mechanisms etc. 

 In  this  paper,  we  present  an  AI-based  algorithm  to  efficiently  capture  the  intricacies  of  the  performance 
 verification  flow,  offering  insights  into  strategies,  methodologies  ,  stimulus  generation,  analysis  techniques 
 and  results.  More  importantly,  this  approach  is  designed  to  be  scalable  across  various  testbenches  and 
 environments  including  SoC  modeling,  IP  and  SoC  level  RTL  simulations,  emulation  and  post  silicon 
 validation. 

 The  rest  of  the  paper  is  organized  as  follows,  we  first  define  the  problem  statement  in  Section  II.  In 
 Section  III,  we  discuss  our  proposed  solution.  Section  IV  gives  a  brief  introduction  to  the  algorithms  used. 
 We  discuss  our  experimental  results  in  Section  V.  Finally  in  section  VI,  we  have  conclusion  and  future 
 work. 

 II  Problem Statement 

 Performance Test Stimulus: Long Duration Use Case-Based Benchmarks 



 Use  case-based  benchmarks  serve  as  critical  tests  in  measuring  the  performance  and  functionality  of 
 SoCs.  The  ultimate  goal  of  any  SoC  is  to  run  full  benchmarks  or  use  cases  to  stay  competitive  in  the 
 industry.  Running  such  scenarios  on  RTL  early  in  the  project  life  cycle  enables  designers  to  identify  and 
 fix  bugs  before  they  escalate  into  more  complex  issues. 
 To  detect  and  mitigate  bugs  early  and  prevent  costly 
 redesigns,  RTL  simulation  platforms  are  extensively  used 
 but  are  relatively  slow  in  terms  of  runtime.  Long-running 
 simulations  of  usecases  are  not  feasible  to  run  on  RTL 
 simulation  platforms  due  to  the  runtime  limitations. 
 Therefore,  an  alternative  approach  is  needed  to  make 
 usecases  simulation  friendly,  yet  covering  full 
 functionality.  AI  classification  algorithms  can  be  applied 
 to solve this problem. 

 Performance Test Failures 

 Performance  failures  are  different  from  functional  failures  because  they  have  a  single,  unique  signature:  a 
 mismatch  in  total  cycle  count.  The  number  of  failures  will  vary  depending  on  the  project  timeline  and  how 
 tightly  correlated  the  criteria  is  kept.  As  shown  in  Figure  3  below,  the  number  of  failures  decreases  as  the 

 project  gets  closer  to  tapeout.  Similarly,  the  number  of  failures  increases  as  the  correlation  percentage 
 target  decreases  as  can  be  seen  in  Figure  2.  With  a  correlation  criteria  of  10%  vs  2%  there  could 
 potentially  be  more  tests  that  fail.  Triaging  and  prioritizing  performance  outliers  with  a  single  signature  is 
 difficult  when  the  number  of  outliers  are  large  in  count.  AI  classification  algorithms  can  be  applied  to  solve 
 this problem. 

 III Solution 

 In  order  to  manage  potentially  overwhelming  performance  state  space,  we  have  come  up  with  AI-Based 
 methodologies  to  identify  the  right  and  sufficient  stimulus  (  AI-Based  Stimulus  Generation  )  and  outliers 
 to  be  debugged  with  high  priority  (  AI-Based  Performance  Analysis  ).  Our  proposed  methodology 
 leverages  popular  statistical  analysis  techniques  like  principal  component  analysis  (PCA)  and  clustering 



 algorithms  (K-means  clustering  algorithms)  [5][7].  Our  test 
 scenarios  are  aligned  across  modeling,  simulation  and 
 emulation  in  order  to  do  correlation.  We  have  automated 
 performance  verification  flow  across  various  environments 
 where  the  same  stimulus  file  is  read  in  by  the  model  and  RTL 
 and  tests  are  run  in  both.  We  then  compare  metrics  like 
 latency  and  throughput  for  a  3-way  correlation  across 
 theoretical expectation, model and RTL. 

 AI-Based Stimulus Generation 
 Many  use  cases  have  repetitive  behavior  as  can  be  seen  in  the  example  in  the  plot  Figure  1  with 
 repetitive  throughput  pattern  over  time.  Identifying  the  traffic  pattern  helps  to  divide  the  full  use  case  into 
 meaningful,  simulation-friendly  snippets.  Figure  4  shows  the  throughput  vs.  time  behavior  of  one  use 
 case,  where  the  throughput  is  recurrent  in  nature  which  renders  it  unnecessary  to  run  the  entire  usecase 
 test  in  simulation  or  emulation  environment.  Throughput  alone  doesn’t  fully  characterize  use  case 
 behavior,  as  it  can  be  influenced  by  a  range  of  other  factors  such  as  cache  hits/misses,  traffic,  address 
 patterns  etc.  Identifying  similar  use  case  behaviors  is  a  challenging  task.  Therefore,  AI-based  techniques 
 can  be  used  to  identify  similar  time  snippets  and  characterize  the  most  representative  snippets  of  the 
 entire  usecase  which  can  then  be  replayed  in  RTL  simulation  and  emulation  more  effectively.  Fig  5  shows 
 the steps involved in our algorithm workflow. 

 The  following  are  some  example  statistics  that  can  be  attributed  to  each  time  window  to  help  AI 
 algorithms  classify  unique  behaviors  and  form  clusters,  statistics  like  average  bandwidth,  median  latency, 
 outstanding  count,  DRAM  refresh  count,  DRAM  page  hits,  MMU  cache  hits,  data  cache  hits  etc.  The 
 accuracy of the algorithm progressively improves with the number of statistics used. 

 AI-Based Performance Analysis (outliers classification) 
 Analyzing  performance  verification  failures  pose  a  unique  challenge.  Unlike  functional  simulations, 
 performance  verification  failures  often  lack  unique  and  self  descriptive  error  signatures,  most  often 
 showing up as cycle count mismatch or throughput discrepancies. 
 To  address  this  challenge,  advanced  AI  algorithms  are  deployed  to  classify  failures  into  distinct  buckets 
 thus  enabling  the  identification  of  critical  issues  with  higher  debug  priority  [4].  Notably,  90%  of  failures 
 arise  from  common  bottlenecks  falling  into  a  “  Big-Bucket  ”  category.  The  remaining  10%  failures  are 
 assigned  equal  weightage  as  they  may  represent  different  corner  case  scenarios  which  are  critical  to 
 debug. 



 During the prioritization of failure categories, the AI-based tool considers multiple parameters from the 
 test config and runtime statistics including traffic patterns, average outstanding count, median and 
 structural latencies, back pressure, bandwidth   discrepancies and more. These parameters are fed into 
 our algorithm which then automatically classifies the tests into the respective buckets or clusters as 
 shown in Fig 6. The tool expedites the time to debug by associating failures with potential root causes. 

 IV Algorithms (PCA & K-Means Algorithm) 

 K-means  is  an  unsupervised  machine  learning  algorithm  that  groups  data  into  distinct  clusters  and  works 
 by  iteratively  minimizing  intra-cluster  variance  while  maximizing  inter-cluster  variance.  It  requires  feeding 
 the value of k(number of clusters) and iteratively updates cluster centroids until convergence. 

 Large  dimensionality  of  input  data  plays  significant  challenges  in  SOC  performance  verification,  as 
 capturing  numerous  performance  metrics  for  each  testcase  leads  to  computational  inefficiencies  while 
 clustering. 

 PCA  is  a  vital  dimensionality  reduction  technique  that  simplifies  high  dimensional  dataset  while  preserving 
 the crucial information. 

 We  use  a  very  similar  flow  for  both  the  tasks  at  hand  (AI-Based  Stimulus  Generation  and  AI-Based 
 Performance Analysis).  The approach involves following  primary steps : 

 ●  To  ensure  the  algorithm's  proper  functionality  the  input  dataset  has  to  be  normalized,  failure  to 
 perform  this  critical  pre-processing  step  can  lead  to  disproportionate  weightage  of  features  with 
 varying numerical scales, potentially leading to inaccurate outcomes. 

 ●  As  discussed  earlier,  we  use  PCA  to  reduce  the  number  of  features  in  our  data  before  feeding  it 
 into  our  clustering  algorithm  [1].  For  the  optimal  number  of  principal  components,  we  adopt  either 
 of  the  two  techniques,  namely  Cumulative  Variance  graphs  (Fig  13)  or  Silhouette  Score  (Fig  14). 
 We  establish  a  selection  criterion,  targeting  80%  (determined  experimentally)  cumulative  variance 
 as  the  threshold  for  determining  the  suitable  number  of  PCA  components.  Silhouette  score  [8] 
 plot captures the overall quality of clustering for varying PCA components. 

 ●  A crucial step that determines the accuracy of our 
 algorithm implementation is to come up with an optimal 
 number of clusters . Fig 7 shows our plot of within cluster 
 sum of squares (WCSS) against the number of clusters. 
 The underlying concept revolves around the identification 
 of the juncture where further increment in the number of 
 clusters ceases to yield a substantial reduction in the 
 WCSS score. This strategic approach is commonly 
 recognized as the "elbow method" [3] [6]. 

 ●  Once  we  know  the  appropriate  number  of  clusters,  we  feed 
 this  information  along  with  the  PCA  components  into  our 
 k-means  algorithm,  which  provides  centroids  of  each  cluster  along  with  cluster  labels  for  each 
 datapoint.  We  are  more  interested  in  identifying  the  point  central  to  each  cluster  which  is  a 
 representative  of  all  points  in  the  cluster.  Our  criterion  for  selecting  this  point  is  to  find  the  data 
 point  nearest  to  the  mathematical  cluster  centroid.  Depending  on  the  specific  circumstances,  this 



 central  point  may  encompass  a  single  data  point  or,  in  certain  scenarios,  a  set  of  data  points. 
 Unless  otherwise  specified,  we  call  this  central  point  a  centroid  (though  mathematically  it  is  not)  in 
 our further discussion. The distance metric used is Euclidean distance. 

 V Results 

 Test Stimulus: Simulation and Emulation friendly 

 We  ran  a  complete  single  initiator  performance  usecase  on  a  C  based  SoC  performance  model  and  collected  statistics 
 for  every  10  microsecond  time  window  at  the  initiator  port.  The  stats  captured  includes  read/write  average  latency, 
 bandwidth  and  outstanding  requests  for  the  initiator  port  under  consideration.  The  exact  format  of  the  data  collected 
 is  shown  in  Fig  8.  The  choice  for  number  of  PCA  components  for  normalized  dataset  came  out  to  be  3  (using  80% 
 variance  criteria)  and  the  number  of  clusters  was  set  to  4  (using  elbow  method  )  as  shown  in  Fig  9.  These 
 hyperparameters  may  differ  depending  upon  the  usecase,  initiator  port,  time  window  size,  performance  metrics 
 collected  etc.  Fig  10  shows  the  formed  clusters  along  with  their  centroids.  Each  point  in  the  figure  essentially 
 represents  a  time  window  (a  row  in  our  dataset).  Our  algorithm  also  reports  the  exact  time  windows  which 
 correspond  to  each  cluster’s  centroid  (denoted  as  trace  snippets  to  be  analyzed  in  RTL).  Trace  snippets  are 
 essentially  the  read/write  address  patterns  initiated  in  that  time  window.  So  instead  of  running  the  complete  1 
 millisecond  usecase  trace  in  simulation,  we  run  only  the  centroid  traces(which  adds  to  40  microsecond  for  4 
 clusters), significantly reducing the simulation time, while at the same time preserving the usecase properties. 

 Performance Simulations Failure Analysis (Big and Unique Buckets) 



 For  each  of  our  RTL  performance  tests  we  collect  a  large  number  of  statistics,  some  of  them  are 
 mentioned  in  the  below  table  Fig  11.  These  stats  are  in  addition  to  the  performance  metrics  of  the  initiator 
 port  as  described  in  the  previous  section.  For  each  test,  we  are  more  interested  in  analyzing  the 
 correlation  of  the  performance  metrics  (latency,  bandwidth  and  max  outstanding  requests)  with  either  the 
 previous  runs,  or  with  the  architecturally  defined  numbers  (rather  than  their  absolute  numbers)  .  So 
 performance  stats  are  fed  into  the  model  as  correlation  coefficients  (Fig  12.2).  Additionally,  for 
 non-numeric  features  (e.g.,  Fabric  Name),  we  employ  suitable  numeric  mappings,  a  process  refined 
 through  a  series  of  experimental  iterations  to  suit  our  test  suites.  Fig  12.1  represents  the  format  in  which 
 data  for  each  test  is  captured.  It  is  subsequently  normalized  and  the  number  of  PCA  components  and 
 clusters are determined using the approach described earlier. 
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 Fig 11: Test Statistics 

 Using  80%  variance  criteria,  the  number  of  PCA  components  comes  out  to  be  5  which  is  significantly  less 
 than  our  total  number  of  features(35).  To  ensure  clustering  efficiency  while  reducing  the  number  of 



 components,  we  also  plot  the  Silhouette  score  for  different  PCA  components  for  a  given  number  of 
 clusters as shown in Fig  14. 

 Once  hyperparameters  are  finalized,  all  identified  failures  are  input  into  our  algorithm,  which  generates 
 clusters,  each  characterized  by  a  centroid  representing  what  we  identify  as  priority  debugs.  Hence  we 
 begin  with  debugging  the  tests  corresponding  to  centroids  and  notably  witness  the  resolution  of 
 performance  bottlenecks  in  other  cluster  members  as  well  (attributed  to  the  similarity  of  issues  they 
 share)  .  This  significantly  improves  our  debug  speed  reducing  it  from  an  estimated  2  weeks  to  as  low  as  3 
 days.  Fig  16  contains  a  visual  representation  of  these  clusters  and  their  centroids,  where  each  point 
 essentially  represents  a  single  failing  test.  It  is  important  to  observe  that  we  have  used  only  the  top  3  PCA 
 components for plotting, though their total number is 5 as determined in Fig 15 (elbow method). 

 In  conjunction  with  this,  our  objective  extends  to  the  analysis  of  various  cluster  properties,  to  better 
 understand  the  cause  of  failures.  Various  per  cluster  stats(for  e.g  mode  of  each  feature  for  all  points 
 within  a  cluster),  along  with  the  feature  values  for  the  cluster  centroids  are  captured  in  Fig  17.  A  large 
 number  of  tests  in  a  cluster,  of  a  particular  address  pattern(or  any  other  feature  for  instance)  indicates  the 
 cause  of  failure  for  those  cluster  members.  A  high  mode  count  for  a  feature  corresponds  to  its  low 
 variance  in  the  cluster.  This  kind  of  analytical  approach(by  observing  variances)  provides  valuable 
 insights into performance bottlenecks of that cluster’s members. 



 VI Conclusion 

 We  proposed  an  efficient  AI-Based  algorithm  for  stimulus  generation  and  performance  failure  analysis. 
 This  stimulus  generation  technique  helped  cut  down  the  simulation  time  by  96%  (from  120  to  6  hours) 
 with  multiple  unique  snippets  running  simultaneously  to  achieve  the  same  full  use-case  behavior. 
 AI-Based  Performance  Analysis  technique  helped  identify  the  outlier  Subsystem,  IP  port  and  Test 
 Scenario  to  prioritize  the  debug.  Using  this  data,  we  identified  bugs  related  to  MMU  Enable,  IP  specific 
 credit/buffer sizes early in the design cycle that got fixed in the same project. 

 This  methodical  and  highly  optimized  approach  to  performance  verification  flow  helped  detection  of 
 performance  gaps  early  in  the  design  cycle.  It  helped  uncover  multiple  bugs  leading  to  RTL  fixes  in  time 
 for achieving critical project milestones. 

 One  of  the  many  RTL  issues  we  found  during  our  experiments  was  unintentional  clock  changes  in  one 
 particular  Fabric  configuration.  Our  algorithm  generated  a  significant  cluster,  encompassing  all  latency 
 tests  from  all  routes  involving  initiators  from  that  exact  same  fabric.  Upon  closer  examination  of  the 
 cluster’s  centroid,  we  could  swiftly  identify  the  clock  frequency  issue  which  led  to  resolving  multiple 
 failures. 

 We  aim  to  further  enhance  our  existing  flow  by  incorporating  additional  input  test  statistics  to  enhance  the 
 accuracy  of  the  results  of  our  algorithm.  Also,  we  intend  to  augment  our  current  simulations  transitioning 
 from  cold  cache  state  to  dumping  all  caches/buffers  states  and  initialize  them  in  RTL  prior  to  running  the 
 snippets.  Furthermore,  we  plan  to  extend  our  experiments  to  include  running  test  scenarios  with  multiple 
 initiators and by using different time windows. 
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