Al-based Algorithms to Analyze and Optimize Performance
Verification Efforts

Saksham Mehra, Raghu Alamuri, Sharada Vajja (Google LLC)

Abstract-- Mobile System-on-Chip (SoC) devices have entered an era of
unprecedented complexity, driven by the exponential growth in hardware capabilities
within smartphones and other portable devices. The increased demand to support
complex and high performance features in the current smartphones has prompted the
integration of compute engines like GPUs, multicore CPUs and other Machine Learning
processing units in the mobile chips. This substantially surged the performance demands
placed on the mobile devices making performance verification an increasingly critical
endeavor in addition to the functional verification. In this paper, we address two critical
aspects of efficient and scalable performance verification through our proposed Al
algorithm flow. We streamline stimulus generation and optimize the simulation time of a
usecase by running only a subset that is representative of the entire usecase. We
leverage the same algorithm to analyze and characterize performance failures,
significantly expediting the debugging process.

I Introduction

Performance issues in SoCs often exhibit a cascading effect wherein a throughput bottleneck in one IP at
a specific time instance might impact a different IP at a distinct time. This complexity requires a multi-level
approach to problem solving from IP level testing to post silicon validation. Performance analysis in the
SOC domain gauges resource utilization including but not limited to meeting throughput and latency
requirements. The complexity arises due to multiple operating points, multiple clock frequencies, multiple
initiator and target interfaces on both datapath and control path and other factors impacting performance
like quality of service (QoS), arbitration mechanisms etc.

In this paper, we present an Al-based algorithm to efficiently capture the intricacies of the performance
verification flow, offering insights into strategies, methodologies , stimulus generation, analysis techniques
and results. More importantly, this approach is designed to be scalable across various testbenches and
environments including SoC modeling, IP and SoC level RTL simulations, emulation and post silicon
validation.

The rest of the paper is organized as follows, we first define the problem statement in Section Il. In
Section lll, we discuss our proposed solution. Section IV gives a brief introduction to the algorithms used.

We discuss our experimental results in Section V. Finally in section VI, we have conclusion and future
work.

II Problem Statement

Performance Test Stimulus: Long Duration Use Case-Based Benchmarks

Use case-based benchmarks serve as critical tests in measuring the performance and functionality of
SoCs. The ultimate goal of any SoC is to run full benchmarks or use cases to stay competitive in the
industry. Running such scenarios on RTL early in the project life cycle enables designers to identify and
fix bugs before they escalate into more complex issues.
To detect and mitigate bugs early and prevent costly
redesigns, RTL simulation platforms are extensively used
but are relatively slow in terms of runtime. Long-running
simulations of usecases are not feasible to run on RTL
simulation platforms due to the runtime limitations.
Therefore, an alternative approach is needed to make
usecases simulation friendly, yet covering full . . . time
i . . . i i Fig 1: Usecase showing a typical
functionality. Al classification algorithms can be applied repetitive throughput pattern over time
to solve this problem.

Performance Test Failures

Performance failures are different from functional failures because they have a single, unique signature: a
mismatch in total cycle count. The number of failures will vary depending on the project timeline and how
tightly correlated the criteria is kept. As shown in Figure 3 below, the number of failures decreases as the

e

Number of Failures

=
g gw
8 5 S
S o
L = O
g e o
= - o
[SIN<]
RS
o
Q
£
S
=z : :
Initial : Middle . End
Fig 2: © Jati Fig 3: Project
g 2: orrelation Timeline —>

Percentage

project gets closer to tapeout. Similarly, the number of failures increases as the correlation percentage
target decreases as can be seen in Figure 2. With a correlation criteria of 10% vs 2% there could
potentially be more tests that fail. Triaging and prioritizing performance outliers with a single signature is
difficult when the number of outliers are large in count. Al classification algorithms can be applied to solve
this problem.

III Solution

In order to manage potentially overwhelming performance state space, we have come up with Al-Based
methodologies to identify the right and sufficient stimulus (Al-Based Stimulus Generation) and outliers
to be debugged with high priority (Al-Based Performance Analysis). Our proposed methodology
leverages popular statistical analysis techniques like principal component analysis (PCA) and clustering

algorithms (K-means clustering algorithms) [5][7]. Our test
scenarios are aligned across modeling, simulation and pihaie -2 ~adhulin L
emulation in order to do correlation. We have automated .
performance verification flow across various environments
where the same stimulus file is read in by the model and RTL
and tests are run in both. We then compare metrics like
latency and throughput for a 3-way correlation across
theoretical expectation, model and RTL.

Thoughput

A
i
RSN
S

%]

Shispet 1T
Shinpeis
Shipeis

time

Fig 4: Unique snippets of a repetitive
usecase throughput pattern

Al-Based Stimulus Generation

Many use cases have repetitive behavior as can be seen in the example in the plot Figure 1 with
repetitive throughput pattern over time. Identifying the traffic pattern helps to divide the full use case into
meaningful, simulation-friendly snippets. Figure 4 shows the throughput vs. time behavior of one use
case, where the throughput is recurrent in nature which renders it unnecessary to run the entire usecase
test in simulation or emulation environment. Throughput alone doesn’t fully characterize use case
behavior, as it can be influenced by a range of other factors such as cache hits/misses, traffic, address
patterns etc. Identifying similar use case behaviors is a challenging task. Therefore, Al-based techniques
can be used to identify similar time snippets and characterize the most representative snippets of the
entire usecase which can then be replayed in RTL simulation and emulation more effectively. Fig 5 shows
the steps involved in our algorithm workflow.

Time window
N Centroids Testbench
s Time window \\ PCA & 1[Snippet 1 generated based on Time } R
{ Full } _{ soc } 2 Stats ---2y K-Means | _--~ window 10 -~ I
u - A . <o =
Model \\ . e CIusterlng S~ { Snippet 4 generated based on Time } ="

i indow 94
[Time window Algorithm window
1000 Stats

Fig 5: K-means clustering algorithm to identify hotspots

The following are some example statistics that can be attributed to each time window to help Al
algorithms classify unique behaviors and form clusters, statistics like average bandwidth, median latency,
outstanding count, DRAM refresh count, DRAM page hits, MMU cache hits, data cache hits etc. The
accuracy of the algorithm progressively improves with the number of statistics used.

Al-Based Performance Analysis (outliers classification)

Analyzing performance verification failures pose a unique challenge. Unlike functional simulations,
performance verification failures often lack unique and self descriptive error signatures, most often
showing up as cycle count mismatch or throughput discrepancies.

To address this challenge, advanced Al algorithms are deployed to classify failures into distinct buckets
thus enabling the identification of critical issues with higher debug priority [4]. Notably, 90% of failures
arise from common bottlenecks falling into a “Big-Bucket’ category. The remaining 10% failures are
assigned equal weightage as they may represent different corner case scenarios which are critical to

debug.
[|

AN Big Bucket Outlier
R PCA& - " Characteristics
=3 K-Means =L include which IP or
- - AIgorithm Tl Test chnario or
e Outliers Fabric etc
Run -7
Statistics

Fig 6: Algorithm Flow for Performance
Failures Classification

During the prioritization of failure categories, the Al-based tool considers multiple parameters from the
test config and runtime statistics including traffic patterns, average outstanding count, median and
structural latencies, back pressure, bandwidth discrepancies and more. These parameters are fed into
our algorithm which then automatically classifies the tests into the respective buckets or clusters as
shown in Fig 6. The tool expedites the time to debug by associating failures with potential root causes.

IV Algorithms (PCA & K-Means Algorithm)

K-means is an unsupervised machine learning algorithm that groups data into distinct clusters and works
by iteratively minimizing intra-cluster variance while maximizing inter-cluster variance. It requires feeding
the value of k(number of clusters) and iteratively updates cluster centroids until convergence.

Large dimensionality of input data plays significant challenges in SOC performance verification, as
capturing numerous performance metrics for each testcase leads to computational inefficiencies while
clustering.

PCA is a vital dimensionality reduction technique that simplifies high dimensional dataset while preserving
the crucial information.

We use a very similar flow for both the tasks at hand (Al-Based Stimulus Generation and Al-Based
Performance Analysis). The approach involves following primary steps :

e To ensure the algorithm's proper functionality the input dataset has to be normalized, failure to
perform this critical pre-processing step can lead to disproportionate weightage of features with
varying numerical scales, potentially leading to inaccurate outcomes.

e As discussed earlier, we use PCA to reduce the number of features in our data before feeding it
into our clustering algorithm [1]. For the optimal number of principal components, we adopt either
of the two techniques, namely Cumulative Variance graphs (Fig 13) or Silhouette Score (Fig 14).
We establish a selection criterion, targeting 80% (determined experimentally) cumulative variance
as the threshold for determining the suitable number of PCA components. Silhouette score [8]
plot captures the overall quality of clustering for varying PCA components.
e A crucial step that determines the accuracy of our Elbow Method For Optimal k
algorithm implementation is to come up with an optimal 8000
number of clusters . Fig 7 shows our plot of within cluster “‘
sum of squares (WCSS) against the number of clusters. "
The underlying concept revolves around the identification o] |
of the juncture where further increment in the number of .
clusters ceases to yield a substantial reduction in the S Y
WCSS score. This strategic approach is commonly o s ereeaee
recognized as the "elbow method" [3] [6]. : :

WCSS

. Fig 7: Elbow method curve for
e Once we know the appropriate number of clusters, we feed optimal clusters

this information along with the PCA components into our

k-means algorithm, which provides centroids of each cluster along with cluster labels for each
datapoint. We are more interested in identifying the point central to each cluster which is a
representative of all points in the cluster. Our criterion for selecting this point is to find the data
point nearest to the mathematical cluster centroid. Depending on the specific circumstances, this

central point may encompass a single data point or, in certain scenarios, a set of data points.
Unless otherwise specified, we call this central point a centroid (though mathematically it is not) in
our further discussion. The distance metric used is Euclidean distance.

V Results

Test Stimulus: Simulation and Emulation friendly

We ran a complete single initiator performance usecase on a C based SoC performance model and collected statistics
for every 10 microsecond time window at the initiator port. The stats captured includes read/write average latency,
bandwidth and outstanding requests for the initiator port under consideration. The exact format of the data collected
is shown in Fig 8. The choice for number of PCA components for normalized dataset came out to be 3 (using 80%
variance criteria) and the number of clusters was set to 4 (using elbow method) as shown in Fig 9. These
hyperparameters may differ depending upon the usecase, initiator port, time window size, performance metrics
collected etc. Fig 10 shows the formed clusters along with their centroids. Each point in the figure essentially
represents a time window (a row in our dataset). Our algorithm also reports the exact time windows which
correspond to each cluster’s centroid (denoted as trace snippets to be analyzed in RTL). Trace snippets are
essentially the read/write address patterns initiated in that time window. So instead of running the complete 1
millisecond usecase trace in simulation, we run only the centroid traces(which adds to 40 microsecond for 4
clusters), significantly reducing the simulation time, while at the same time preserving the usecase properties.

time_stamp r_avg_outstanding w_avg_outstanding r_avg_latency r_bandwidth w_avg_latency w_bandwidth

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.0 20.0 13.0 515.0 755.2 93.0 275.2
2 2.0 52.0 3.0 4995.0 627.2 429.0 192.0
3 3.0 54.0 3.0 2146.0 985.6 125.0 211.2
4 4.0 23.0 1.0 989.0 883.2 95.0 198.4

Fig 8: Sample input format to the k-means algorithm

Elbow Method For Optlmal k Performance clusters

. L) cluster O

‘l cluster 1

| e cluster 2

8000 cluster 3

centroids

-
6000] | } ;
0) . %
\, g
= s0000 % I g
\ ['8

2000 \'\,‘ /
.. v
... = K
‘”-"-u-”.».n-”.".“ / <&
0 4 ‘&Qo
0 10 20 30 40 50 —
Number of Clusters T
Fig 9: Determining optimal number of Fig 10: Visualization of clusters

clusters formed

Performance Simulations Failure Analysis (Big and Unique Buckets)

For each of our RTL performance tests we collect a large number of statistics, some of them are
mentioned in the below table Fig 11. These stats are in addition to the performance metrics of the initiator
port as described in the previous section. For each test, we are more interested in analyzing the
correlation of the performance metrics (latency, bandwidth and max outstanding requests) with either the
previous runs, or with the architecturally defined numbers (rather than their absolute numbers) . So
performance stats are fed into the model as correlation coefficients (Fig 12.2). Additionally, for
non-numeric features (e.g., Fabric Name), we employ suitable numeric mappings, a process refined
through a series of experimental iterations to suit our test suites. Fig 12.1 represents the format in which
data for each test is captured. It is subsequently normalized and the number of PCA components and
clusters are determined using the approach described earlier.

DDR Activate count

DDR Refresh count

DDR Precharge
count

Testname Portname rw_pattern

Test0

Test1

Test 2

Test3

Test4

Port 0

Port 1

Port2

Port 3

Port4

W

wo

wo

0

write_average_outstanding
(wr_avg_os)

Memory Management Unit
Enable/Disable (MMU
Enable)

Memory Controller Latency

I‘I‘I: Fag Fabric Linear/Random
1280 128 Fabric0 linear
480 48 Fabric linear
64.0 64 Fabric2 linear
320 32 Fabric3 linear
640 64 Fabric4 linear

IP Max Outstanding Fixed AxID Address pattern

(IP MO) (sameaid) (Linear/Random)

o jt‘;;':n"g;’; Cache hit enable/disable w”‘::r’g‘;:’:g"e’
(FAB MO) (el (FAB VC)

Memory Controller

MU
Enable

mmudis
mmudis
mmudis
mmudis

mmudis

bandwidth

sameaid

uniqueaid
uniqueaid
uniqueaid
uniqueaid

sameaid

SLC

Hit "

slemiss
slcmiss
slemiss
slcmiss

slcmiss

Memory controller Traffic Pattern
bandwidth efficiency (rw_pattern)

Fig 11: Test Statistics

802 977
1.000000

879 981
0004155 m -
0001623 T %
0.000000 806 097
1.000000 m 994

Fig 12.2: Performance metrics

write bw * Observed Latency (ns) Expected Latency (ns) Correlation

0820880
0896024
0817337
0.736842
0820774
0.775654

are

fed in as correlation coefficients

Fig 12.1: Sample input format to the k-means algorithm

Using 80% variance criteria, the number of PCA components comes out to be 5 which is significantly less
than our total number of features(35). To ensure clustering efficiency while reducing the number of

Explained Variance by Components

=
o

o
©

o
©

I
J

e
o

o
]

e
>

",'

o=
-

—e--e-e-e-0--0--0-o-o--o

Cumulative Explained Variance

o
<)

25 5.0

7.5 10.0 12.5 15.0 17.5 20.0
Number of Components

Fig 13: Determining optimum number
of PCA components

Silhouette Score

0.5

0.4

0.3

0.2

0.1

00 0 5 6 7 8 9 10 15 20 30 35

Number of PCA COMP (0= Original data)

Fig 14: Silhouette Score vs PCA Components

(Bar corresponding to 0 components is
score on clustering with original 35
components)

components, we also plot the Silhouette score for different PCA components for a given number of
clusters as shown in Fig 14.

Once hyperparameters are finalized, all identified failures are input into our algorithm, which generates
clusters, each characterized by a centroid representing what we identify as priority debugs. Hence we
begin with debugging the tests corresponding to centroids and notably witness the resolution of
performance bottlenecks in other cluster members as well (attributed to the similarity of issues they
share). This significantly improves our debug speed reducing it from an estimated 2 weeks to as low as 3
days. Fig 16 contains a visual representation of these clusters and their centroids, where each point
essentially represents a single failing test. It is important to observe that we have used only the top 3 PCA
components for plotting, though their total number is 5 as determined in Fig 15 (elbow method).

Elbow Method For Optimal k Performance clusters
- cluster O

M cluster 1
i - cluster 2
8000 i - cluster 3
- cluster 4

cluster 5
E 3 centroids

6000

4000 4

WCSS

Cémpo“nent*s-»

2000 ‘5‘
,

.
.
-e.
)
AT
00000000
0 MR R

0 10 20 30 40 50
Number of Clusters

Fig 15: Determining optimal number of clusters

Fig 16: Visualization of clusters
formed

In conjunction with this, our objective extends to the analysis of various cluster properties, to better
understand the cause of failures. Various per cluster stats(for e.g mode of each feature for all points
within a cluster), along with the feature values for the cluster centroids are captured in Fig 17. A large
number of tests in a cluster, of a particular address pattern(or any other feature for instance) indicates the
cause of failure for those cluster members. A high mode count for a feature corresponds to its low
variance in the cluster. This kind of analytical approach(by observing variances) provides valuable
insights into performance bottlenecks of that cluster’s members.

. Mode Mode . . Mode Mode .

Festures | AT | cluster HTEY) fontrold | ferimnce | gt oty Cenrodd
0 1

rw_pattern 0.000000 rw 100.000000 w 0.000000 rw 100.000000 rw
IP MO 9532.929577 160.0 26.388889 160.0 [12159.739229 256.0 16.161616 256.0
FAB MO 9532.929577 160 26.388889 160 [12159.739229 256 16.161616 256
Fabric 0.000000 Fabric 6 100.000000 Fabric 6 0.000000 Fabric 2 100.000000 Fabric 2
Linear/Random 1588.419405 linear 80.555556 linear | 1076.066790 linear 87.878788 linear
MMU Enable 0.000000 | mmudis 100.000000 mmudis 0.000000 | mmudis 100.000000 mmudis
sameaid 0.000000 | uniqueaid 100.000000 uniqueaid 391.671820 [uniqueaid 95.959596 uniqueaid
SLC Hit 890.062598 | slecmiss 90.277778 slcmiss | 1436.817151 slecmiss 82.828283 slcmiss
Structural Latency 17.996870 154.0 37.500000 155.0 20.286539 192.0 51.515152 192.0
FAB VC | 357902.973396 Type 0 72.222222 Type 0 |13636.363636 Type3 54.545455 Type 3

Fig 17: Per cluster statistics

VI Conclusion

We proposed an efficient Al-Based algorithm for stimulus generation and performance failure analysis.
This stimulus generation technique helped cut down the simulation time by 96% (from 120 to 6 hours)
with multiple unique snippets running simultaneously to achieve the same full use-case behavior.
Al-Based Performance Analysis technique helped identify the outlier Subsystem, IP port and Test
Scenario to prioritize the debug. Using this data, we identified bugs related to MMU Enable, IP specific
credit/buffer sizes early in the design cycle that got fixed in the same project.

This methodical and highly optimized approach to performance verification flow helped detection of
performance gaps early in the design cycle. It helped uncover multiple bugs leading to RTL fixes in time
for achieving critical project milestones.

One of the many RTL issues we found during our experiments was unintentional clock changes in one
particular Fabric configuration. Our algorithm generated a significant cluster, encompassing all latency
tests from all routes involving initiators from that exact same fabric. Upon closer examination of the
cluster’s centroid, we could swiftly identify the clock frequency issue which led to resolving multiple
failures.

We aim to further enhance our existing flow by incorporating additional input test statistics to enhance the
accuracy of the results of our algorithm. Also, we intend to augment our current simulations transitioning
from cold cache state to dumping all caches/buffers states and initialize them in RTL prior to running the
snippets. Furthermore, we plan to extend our experiments to include running test scenarios with multiple
initiators and by using different time windows.

References

1. S. Song, R. Desikan, M. Barakat, S. Sundaram, A. Gerstlauer and L. K. John, “Fine-Grain Program Snippets
Generator for Mobile Core Design”, GLSVLSI '17: Proceedings of the on Great Lakes Symposium on VLSI, 2017

2. G Anthony; Ronald G. Dreslinski; Thomas F. “Full-system analysis and characterization of interactive
smartphone applications” IEEE International Symposium on Workload Characterization, 2011.

3. Z. Poulos and A. Veneris, "Clustering-based failure triage for rtl regression debugging", IEEE Int'l Test
Conference, 2014.

4. A. Truong, D. Hellstrém, H. Duque, L. Viklund, “Clustering and Classification of UVM Test Failures Using
Machine Learning Techniques” , DVCON Europe 2018

5. Khaled A. Ismail, Mohamed A. Abd El Ghany “Survey on MachineLearning Algorithms Enhancing
the Functional Verification Process” Electronics, 10(21), 2688, 2021

6. El Mandouh, E.; Wassal, A.G., “Accelerating the debugging of FV traces using K-means clustering
techniques". In Proceedings of the 11th International Design & Test Symposium (IDT), Hammamet, Tunisia,
18-20 December 2016; pp. 278-283, 2016

7. S. Sokorac, Optimizing random test constraints using machine learning algorithms. In Proceedings of the
Design and Verification Conference (DVCON), San Jose, CA, USA, 27 February—2 March 2017

8. K. R. Shahapure and C. Nicholas, "Cluster Quality Analysis Using Silhouette Score," 2020 IEEE 7th
International Conference on Data Science and Advanced Analytics (DSAA), pp. 747-748 Sydney, NSW,
Australia, doi: 10.1109/DSAA49011.2020.00096, 2020

https://ieeexplore.ieee.org/author/38236233800
https://ieeexplore.ieee.org/author/37545653700
https://ieeexplore.ieee.org/author/37395315400

