
 AI-based Algorithms to Analyze and Optimize Performance
 Verification Efforts

 Saksham Mehra, Raghu Alamuri, Sharada Vajja (Google LLC)

 Abstract-- Mobile System-on-Chip (SoC) devices have entered an era of
 unprecedented complexity, driven by the exponential growth in hardware capabilities
 within smartphones and other portable devices. The increased demand to support
 complex and high performance features in the current smartphones has prompted the
 integration of compute engines like GPUs, multicore CPUs and other Machine Learning
 processing units in the mobile chips. This substantially surged the performance demands
 placed on the mobile devices making performance verification an increasingly critical
 endeavor in addition to the functional verification. In this paper, we address two critical
 aspects of efficient and scalable performance verification through our proposed AI
 algorithm flow. We streamline stimulus generation and optimize the simulation time of a
 usecase by running only a subset that is representative of the entire usecase. We
 leverage the same algorithm to analyze and characterize performance failures,
 significantly expediting the debugging process.

 I Introduction

 Performance issues in SoCs often exhibit a cascading effect wherein a throughput bottleneck in one IP at
 a specific time instance might impact a different IP at a distinct time. This complexity requires a multi-level
 approach to problem solving from IP level testing to post silicon validation. Performance analysis in the
 SOC domain gauges resource utilization including but not limited to meeting throughput and latency
 requirements. The complexity arises due to multiple operating points, multiple clock frequencies, multiple
 initiator and target interfaces on both datapath and control path and other factors impacting performance
 like quality of service (QoS), arbitration mechanisms etc.

 In this paper, we present an AI-based algorithm to efficiently capture the intricacies of the performance
 verification flow, offering insights into strategies, methodologies , stimulus generation, analysis techniques
 and results. More importantly, this approach is designed to be scalable across various testbenches and
 environments including SoC modeling, IP and SoC level RTL simulations, emulation and post silicon
 validation.

 The rest of the paper is organized as follows, we first define the problem statement in Section II. In
 Section III, we discuss our proposed solution. Section IV gives a brief introduction to the algorithms used.
 We discuss our experimental results in Section V. Finally in section VI, we have conclusion and future
 work.

 II Problem Statement

 Performance Test Stimulus: Long Duration Use Case-Based Benchmarks

 Use case-based benchmarks serve as critical tests in measuring the performance and functionality of
 SoCs. The ultimate goal of any SoC is to run full benchmarks or use cases to stay competitive in the
 industry. Running such scenarios on RTL early in the project life cycle enables designers to identify and
 fix bugs before they escalate into more complex issues.
 To detect and mitigate bugs early and prevent costly
 redesigns, RTL simulation platforms are extensively used
 but are relatively slow in terms of runtime. Long-running
 simulations of usecases are not feasible to run on RTL
 simulation platforms due to the runtime limitations.
 Therefore, an alternative approach is needed to make
 usecases simulation friendly, yet covering full
 functionality. AI classification algorithms can be applied
 to solve this problem.

 Performance Test Failures

 Performance failures are different from functional failures because they have a single, unique signature: a
 mismatch in total cycle count. The number of failures will vary depending on the project timeline and how
 tightly correlated the criteria is kept. As shown in Figure 3 below, the number of failures decreases as the

 project gets closer to tapeout. Similarly, the number of failures increases as the correlation percentage
 target decreases as can be seen in Figure 2. With a correlation criteria of 10% vs 2% there could
 potentially be more tests that fail. Triaging and prioritizing performance outliers with a single signature is
 difficult when the number of outliers are large in count. AI classification algorithms can be applied to solve
 this problem.

 III Solution

 In order to manage potentially overwhelming performance state space, we have come up with AI-Based
 methodologies to identify the right and sufficient stimulus (AI-Based Stimulus Generation) and outliers
 to be debugged with high priority (AI-Based Performance Analysis). Our proposed methodology
 leverages popular statistical analysis techniques like principal component analysis (PCA) and clustering

 algorithms (K-means clustering algorithms) [5][7]. Our test
 scenarios are aligned across modeling, simulation and
 emulation in order to do correlation. We have automated
 performance verification flow across various environments
 where the same stimulus file is read in by the model and RTL
 and tests are run in both. We then compare metrics like
 latency and throughput for a 3-way correlation across
 theoretical expectation, model and RTL.

 AI-Based Stimulus Generation
 Many use cases have repetitive behavior as can be seen in the example in the plot Figure 1 with
 repetitive throughput pattern over time. Identifying the traffic pattern helps to divide the full use case into
 meaningful, simulation-friendly snippets. Figure 4 shows the throughput vs. time behavior of one use
 case, where the throughput is recurrent in nature which renders it unnecessary to run the entire usecase
 test in simulation or emulation environment. Throughput alone doesn’t fully characterize use case
 behavior, as it can be influenced by a range of other factors such as cache hits/misses, traffic, address
 patterns etc. Identifying similar use case behaviors is a challenging task. Therefore, AI-based techniques
 can be used to identify similar time snippets and characterize the most representative snippets of the
 entire usecase which can then be replayed in RTL simulation and emulation more effectively. Fig 5 shows
 the steps involved in our algorithm workflow.

 The following are some example statistics that can be attributed to each time window to help AI
 algorithms classify unique behaviors and form clusters, statistics like average bandwidth, median latency,
 outstanding count, DRAM refresh count, DRAM page hits, MMU cache hits, data cache hits etc. The
 accuracy of the algorithm progressively improves with the number of statistics used.

 AI-Based Performance Analysis (outliers classification)
 Analyzing performance verification failures pose a unique challenge. Unlike functional simulations,
 performance verification failures often lack unique and self descriptive error signatures, most often
 showing up as cycle count mismatch or throughput discrepancies.
 To address this challenge, advanced AI algorithms are deployed to classify failures into distinct buckets
 thus enabling the identification of critical issues with higher debug priority [4]. Notably, 90% of failures
 arise from common bottlenecks falling into a “ Big-Bucket ” category. The remaining 10% failures are
 assigned equal weightage as they may represent different corner case scenarios which are critical to
 debug.

 During the prioritization of failure categories, the AI-based tool considers multiple parameters from the
 test config and runtime statistics including traffic patterns, average outstanding count, median and
 structural latencies, back pressure, bandwidth discrepancies and more. These parameters are fed into
 our algorithm which then automatically classifies the tests into the respective buckets or clusters as
 shown in Fig 6. The tool expedites the time to debug by associating failures with potential root causes.

 IV Algorithms (PCA & K-Means Algorithm)

 K-means is an unsupervised machine learning algorithm that groups data into distinct clusters and works
 by iteratively minimizing intra-cluster variance while maximizing inter-cluster variance. It requires feeding
 the value of k(number of clusters) and iteratively updates cluster centroids until convergence.

 Large dimensionality of input data plays significant challenges in SOC performance verification, as
 capturing numerous performance metrics for each testcase leads to computational inefficiencies while
 clustering.

 PCA is a vital dimensionality reduction technique that simplifies high dimensional dataset while preserving
 the crucial information.

 We use a very similar flow for both the tasks at hand (AI-Based Stimulus Generation and AI-Based
 Performance Analysis). The approach involves following primary steps :

 ● To ensure the algorithm's proper functionality the input dataset has to be normalized, failure to
 perform this critical pre-processing step can lead to disproportionate weightage of features with
 varying numerical scales, potentially leading to inaccurate outcomes.

 ● As discussed earlier, we use PCA to reduce the number of features in our data before feeding it
 into our clustering algorithm [1]. For the optimal number of principal components, we adopt either
 of the two techniques, namely Cumulative Variance graphs (Fig 13) or Silhouette Score (Fig 14).
 We establish a selection criterion, targeting 80% (determined experimentally) cumulative variance
 as the threshold for determining the suitable number of PCA components. Silhouette score [8]
 plot captures the overall quality of clustering for varying PCA components.

 ● A crucial step that determines the accuracy of our
 algorithm implementation is to come up with an optimal
 number of clusters . Fig 7 shows our plot of within cluster
 sum of squares (WCSS) against the number of clusters.
 The underlying concept revolves around the identification
 of the juncture where further increment in the number of
 clusters ceases to yield a substantial reduction in the
 WCSS score. This strategic approach is commonly
 recognized as the "elbow method" [3] [6].

 ● Once we know the appropriate number of clusters, we feed
 this information along with the PCA components into our
 k-means algorithm, which provides centroids of each cluster along with cluster labels for each
 datapoint. We are more interested in identifying the point central to each cluster which is a
 representative of all points in the cluster. Our criterion for selecting this point is to find the data
 point nearest to the mathematical cluster centroid. Depending on the specific circumstances, this

 central point may encompass a single data point or, in certain scenarios, a set of data points.
 Unless otherwise specified, we call this central point a centroid (though mathematically it is not) in
 our further discussion. The distance metric used is Euclidean distance.

 V Results

 Test Stimulus: Simulation and Emulation friendly

 We ran a complete single initiator performance usecase on a C based SoC performance model and collected statistics
 for every 10 microsecond time window at the initiator port. The stats captured includes read/write average latency,
 bandwidth and outstanding requests for the initiator port under consideration. The exact format of the data collected
 is shown in Fig 8. The choice for number of PCA components for normalized dataset came out to be 3 (using 80%
 variance criteria) and the number of clusters was set to 4 (using elbow method) as shown in Fig 9. These
 hyperparameters may differ depending upon the usecase, initiator port, time window size, performance metrics
 collected etc. Fig 10 shows the formed clusters along with their centroids. Each point in the figure essentially
 represents a time window (a row in our dataset). Our algorithm also reports the exact time windows which
 correspond to each cluster’s centroid (denoted as trace snippets to be analyzed in RTL). Trace snippets are
 essentially the read/write address patterns initiated in that time window. So instead of running the complete 1
 millisecond usecase trace in simulation, we run only the centroid traces(which adds to 40 microsecond for 4
 clusters), significantly reducing the simulation time, while at the same time preserving the usecase properties.

 Performance Simulations Failure Analysis (Big and Unique Buckets)

 For each of our RTL performance tests we collect a large number of statistics, some of them are
 mentioned in the below table Fig 11. These stats are in addition to the performance metrics of the initiator
 port as described in the previous section. For each test, we are more interested in analyzing the
 correlation of the performance metrics (latency, bandwidth and max outstanding requests) with either the
 previous runs, or with the architecturally defined numbers (rather than their absolute numbers) . So
 performance stats are fed into the model as correlation coefficients (Fig 12.2). Additionally, for
 non-numeric features (e.g., Fabric Name), we employ suitable numeric mappings, a process refined
 through a series of experimental iterations to suit our test suites. Fig 12.1 represents the format in which
 data for each test is captured. It is subsequently normalized and the number of PCA components and
 clusters are determined using the approach described earlier.

 DDR Activate count write_average_outstanding
 (wr_avg_os)

 IP Max Outstanding
 (IP MO)

 Fixed AxID
 (sameaid)

 Address pattern
 (Linear/Random)

 DDR Refresh count
 Memory Management Unit

 Enable/Disable (MMU
 Enable)

 Fabric Max
 Outstanding

 (FAB MO)

 Cache hit enable/disable
 (SLC Hit)

 Virtual Channel
 targeted
 (FAB VC)

 DDR Precharge
 count Memory Controller Latency Memory Controller

 bandwidth
 Memory controller

 bandwidth efficiency
 Traffic Pattern
 (rw_pattern)

 Fig 11: Test Statistics

 Using 80% variance criteria, the number of PCA components comes out to be 5 which is significantly less
 than our total number of features(35). To ensure clustering efficiency while reducing the number of

 components, we also plot the Silhouette score for different PCA components for a given number of
 clusters as shown in Fig 14.

 Once hyperparameters are finalized, all identified failures are input into our algorithm, which generates
 clusters, each characterized by a centroid representing what we identify as priority debugs. Hence we
 begin with debugging the tests corresponding to centroids and notably witness the resolution of
 performance bottlenecks in other cluster members as well (attributed to the similarity of issues they
 share) . This significantly improves our debug speed reducing it from an estimated 2 weeks to as low as 3
 days. Fig 16 contains a visual representation of these clusters and their centroids, where each point
 essentially represents a single failing test. It is important to observe that we have used only the top 3 PCA
 components for plotting, though their total number is 5 as determined in Fig 15 (elbow method).

 In conjunction with this, our objective extends to the analysis of various cluster properties, to better
 understand the cause of failures. Various per cluster stats(for e.g mode of each feature for all points
 within a cluster), along with the feature values for the cluster centroids are captured in Fig 17. A large
 number of tests in a cluster, of a particular address pattern(or any other feature for instance) indicates the
 cause of failure for those cluster members. A high mode count for a feature corresponds to its low
 variance in the cluster. This kind of analytical approach(by observing variances) provides valuable
 insights into performance bottlenecks of that cluster’s members.

 VI Conclusion

 We proposed an efficient AI-Based algorithm for stimulus generation and performance failure analysis.
 This stimulus generation technique helped cut down the simulation time by 96% (from 120 to 6 hours)
 with multiple unique snippets running simultaneously to achieve the same full use-case behavior.
 AI-Based Performance Analysis technique helped identify the outlier Subsystem, IP port and Test
 Scenario to prioritize the debug. Using this data, we identified bugs related to MMU Enable, IP specific
 credit/buffer sizes early in the design cycle that got fixed in the same project.

 This methodical and highly optimized approach to performance verification flow helped detection of
 performance gaps early in the design cycle. It helped uncover multiple bugs leading to RTL fixes in time
 for achieving critical project milestones.

 One of the many RTL issues we found during our experiments was unintentional clock changes in one
 particular Fabric configuration. Our algorithm generated a significant cluster, encompassing all latency
 tests from all routes involving initiators from that exact same fabric. Upon closer examination of the
 cluster’s centroid, we could swiftly identify the clock frequency issue which led to resolving multiple
 failures.

 We aim to further enhance our existing flow by incorporating additional input test statistics to enhance the
 accuracy of the results of our algorithm. Also, we intend to augment our current simulations transitioning
 from cold cache state to dumping all caches/buffers states and initialize them in RTL prior to running the
 snippets. Furthermore, we plan to extend our experiments to include running test scenarios with multiple
 initiators and by using different time windows.

 References

 1. S. Song, R. Desikan, M. Barakat, S. Sundaram, A. Gerstlauer and L. K. John, “Fine-Grain Program Snippets
 Generator for Mobile Core Design”, GLSVLSI '17: Proceedings of the on Great Lakes Symposium on VLSI, 2017

 2. G Anthony ; Ronald G. Dreslinski ; Thomas F. “Full-system analysis and characterization of interactive
 smartphone applications” IEEE International Symposium on Workload Characterization, 2011.

 3. Z. Poulos and A. Veneris, "Clustering-based failure triage for rtl regression debugging", IEEE Int'l Test
 Conference , 2014.

 4. A. Truong, D. Hellström, H. Duque, L. Viklund, “Clustering and Classification of UVM Test Failures Using
 Machine Learning Techniques” , DVCON Europe 2018

 5. Khaled A. Ismail, Mohamed A. Abd El Ghany “Survey on MachineLearning Algorithms Enhancing
 the Functional Verification Process” Electronics , 10 (21), 2688, 2021

 6. El Mandouh, E.; Wassal, A.G., “Accelerating the debugging of FV traces using K-means clustering
 techniques''. In Proceedings of the 11th International Design & Test Symposium (IDT), Hammamet, Tunisia,
 18–20 December 2016; pp. 278–283, 2016

 7. S. Sokorac, Optimizing random test constraints using machine learning algorithms. In Proceedings of the
 Design and Verification Conference (DVCON), San Jose, CA, USA, 27 February–2 March 2017

 8. K. R. Shahapure and C. Nicholas, "Cluster Quality Analysis Using Silhouette Score," 2020 IEEE 7th
 International Conference on Data Science and Advanced Analytics (DSAA), pp. 747-748 Sydney, NSW,
 Australia, doi: 10.1109/DSAA49011.2020.00096, 2020

https://ieeexplore.ieee.org/author/38236233800
https://ieeexplore.ieee.org/author/37545653700
https://ieeexplore.ieee.org/author/37395315400

