
Without Objection – Touring the
uvm_objection implementation – uses and

improvements
Rich Edelman

Siemens EDA, Fremont, CA

Abstract- The SystemVerilog[2] UVM[1] implements a class named uvm_objection. An objection is used to guard code
that "isn't done yet". For example, an objection can prevent a process from finishing until some other process agrees.
uvm_objections are sometimes overused and are always misunderstood. This paper will explain the implementations a bit
and share uses and provide some alternative solutions that are easier to understand, simpler to use, and work
transparently.

I. INTRODUCTION
The SystemVerilog UVM Objections solve a problem – how to coordinate processes. Two processes P1, and P2

are running. But they can only exit together – they must synchronize their exit.
The UVM is built of processes – the phases from uvm_components, the body task from a uvm_sequence and any

threads from these processes. These processes often need to synchronize – for example a request is sent out, and the
processing on collecting responses should not exit until the response is received.

The UVM provides phases which are synchronized automatically. Those phases are pre-defined and can be
extended. Sticking with the pre-defined phases is the best approach. A phase has an objection which is used to
coordinate all the objects that are currently in the current phase. No object can exit the phase when the objection is
raised. Each phase that wants to participate in the phase objection must raise an objection and later drop that
objection. Synchronization with objections is conceptually simple – raise an objection to “passing the barrier” and
drop an objection to “passing the barrier”.

But the UVM phasing and objection code quickly become intertwined. There’s complexity there that can be
problematic to debug and understand. Simple synchronization can be implemented with something much simpler.

In [5] the author proposes a simpler mechanism that end tests – a simple barrier. It has some bells and whistles
and is worth consideration for a different way to exit testbenches. In [4] the authors have created a great treatise on
OVM and UVM and how to terminate tests. It’s much more than just terminating tests, and worth a look. The
example code included in this paper is even simpler still – perhaps too simple – with no bells and whistles – with no
debug hooks or callbacks. But that’s the point – transparent and boringly simple.

II. BACKGROUND

Synchronization primitives [3] exist in process control theory and operating system design among other places.
There are many uses for them.

In the UVM, the run_phase normally raises an objection to exiting. Later the objection will be dropped. At least
one objection must be raised – usually in the test. Without the objection, simulation will end immediately. A typical
run_phase is below. Most tests have one objection, used in this simple way.

task run_phase(uvm_phase phase);
 phase.raise_objection(this);
 `uvm_info(get_type_name(), "...running", UVM_MEDIUM)
 ...
 phase.drop_objection(this);

endtask

The UVM offers some debug built-in, but this debug will generate lots of information with even the simplest
usage. Using +UVM_OBJECTION_TRACE on the command line for just the simple usage above generates more
than 100 lines of output.

III. THE SOURCE CODE – UVM_OBJECTION.SVH AND FRIENDS

The objection has been around since the days of the OVM – before 2009. That code was about 750 lines. And it
looks relatively the same as the UVM versions. The UVM versions of the synchronization items hasn’t changed
much over the years. The number of lines in each file for each major UVM version is listed below.

 uvm-1.1d uvm 1.2 uvm-1800
 90 90 94 src/base/uvm_event_callback.svh
 361 394 432 src/base/uvm_event.svh
 211 209 204 src/base/uvm_barrier.svh
 1502 1453 1241 src/base/uvm_objection.svh
 338 341 349 src/base/uvm_heartbeat.svh
 1192 1198 1212 src/base/uvm_callback.svh
 300 300 307 src/macros/uvm_callback_defines.svh
 3994 3985 3839 total

The file uvm_objection.svh contains 1241 lines in uvm-1800.2_2020_2.0_rc2. It’s a thousand lines.
The class definition contains 5 tasks, 28 functions and 17 class member variables. Of those class member

variables, there are 3 associative arrays indexed by object handle. They are ‘m_source_count’, ‘m_total_count’ and
‘m_drain_time’. Two arrays of integers and one of time. ‘m_source_count’ and ‘m_total_count’ are incremented on
a ‘raise’ and decremented on a ‘drop’. ‘m_drain_time’ is the time for this object to wait once all objections are
dropped before calling ‘all_dropped’ and propagating.

raise_objection

raise_objection immediately calls m_raise. m_raise sets the counts, and checks to print the debug information.
Then it calls the routine ‘raised()’. Raised() checks to see if the ‘obj’ is a component. If so, it calls the
component.raised() routine. Then the raised callbacks. Then it fires the raised events. Most components use the
default empty ‘raised’ definition, but the component has the opportunity to define functionality by defining a
raised() call. After raised returns back to m_raise routine there’s almost 100 lines of code sorting out forks, and
fixing up scheduling. And that’s the easy side of an objection.

drop_objection

drop_objection immediately calls m_drop. M_drop decrements the counts, and checks to print the debug
information. Then it calls the routine ‘dropped()’. Dropped() checks to see if the ‘obj’ is a component. If so it calls
the component.dropped() routine. Then the dropped callbacks. Then it fires the dropped events. Most components
use the default empty ‘dropped’ definition, but the component has the opportunity to define functionality by defining
a dropped() call. After dropped returns back to m_drop, there’s some decisions about forks and propagating.

propagate

When propagate is called if the object is a component, then the objection is propagated to the parent. If the object
is a sequence, then the objection is propagated to the sequencer. The comments say parent_sequence first, then the
sequencer. This seems like an oversight. Or maybe out-of-date comments. This is the “get_parent()” code in
uvm_objection.svh

function uvm_object m_get_parent(uvm_object obj);
 uvm_component comp;
 uvm_sequence_base seq;

if ($cast(comp, obj)) begin
 obj = comp.get_parent();

end
else if ($cast(seq, obj)) begin

 obj = seq.get_sequencer();
end
else

 obj = m_top;
if (obj == null)

 obj = m_top;
return obj;

endfunction

Objections are powerful. In the UVM they are intertwined with phasing which makes them more powerful and
more exotic and more complicated. Experience and examining the code should lead the reader to use them sparingly
– normally just once in a test.

There is some really tricky code wrapped up with objections and phasing. There must be something simpler.

IV. SIMPLE TEST

A simple usage of uvm_objections is below. This code is a run_phase. Standard practice is to call
raise_objection() at the start of the run_phase, and drop_objection at the end.

This particular test simply creates 4 sequences and runs them on the sequencers in the agents in the environments.
Once all sequences have completed, then this test finishes – and calls drop_objection().

task run_phase(uvm_phase phase);
 phase.raise_objection(this);
 `uvm_info(get_type_name(), "...running", UVM_MEDIUM)

 pretty_print();

 s1 = seq::type_id::create("s1");
 s2 = seq::type_id::create("s2");
 s3 = seq::type_id::create("s3");
 s4 = seq::type_id::create("s4");

fork
 s1.start(e1.a.sqr);
 s2.start(e2.a.sqr);

 s3.start(e3.a.sqr);
 s4.start(e4.a.sqr);

join

 phase.drop_objection(this);
endtask

The only thing being synchronized is the test itself – “don’t exit until the test is done”. Limiting the use of
objections to this model will keep things easy and simple. If the need arises to synchronize other things besides
run_phase and exit, then consider something simpler.

V. A LESS SIMPLE, BUT STILL SIMPLE TEST

In the example test above, those environments (e1, e2, e3 and e4) may have an interesting run_phase that should
be synchronized. They each call raise_objection() and drop_objection(). This is an example that uses a raise and a
drop in many “env” classes.
class env extends uvm_component;
 `uvm_component_utils(env)

 agent a;

function new(string name = "env", uvm_component parent = null);
super.new(name, parent);

endfunction

function void build_phase(uvm_phase phase);
 a = agent::type_id::create("a", this);

endfunction

task run_phase(uvm_phase phase);
 phase.raise_objection(this);
 #100000;
 `uvm_info(get_type_name(), "...Objection Testing - 'env' ready to exit", UVM_MEDIUM)
 phase.drop_objection(this);

endtask
endclass

For example, the environment run_phase might simply wait until #100000 ticks have passed, then exit. Producing
the following at the end of the log
UVM_INFO sequence.svh(19) @ 6476: uvm_test_top.e3.a.sqr@@s3 [transaction] ...started
UVM_INFO driver.svh(20) @ 6476: uvm_test_top.e3.a.d [driver] Executing: id: 7 READ(48, 5) #3999
UVM_INFO sequence.svh(23) @ 6484: uvm_test_top.e3.a.sqr@@s3 [transaction] ...finished
UVM_INFO test.svh(46) @ 6484: uvm_test_top [test] ...Objection Testing - 'test' ready to exit
UVM_INFO env.svh(18) @ 100000: uvm_test_top.e4 [env] ...Objection Testing - 'env' ready to exit
UVM_INFO env.svh(18) @ 100000: uvm_test_top.e3 [env] ...Objection Testing - 'env' ready to exit
UVM_INFO env.svh(18) @ 100000: uvm_test_top.e2 [env] ...Objection Testing - 'env' ready to exit
UVM_INFO env.svh(18) @ 100000: uvm_test_top.e1 [env] ...Objection Testing - 'env' ready to exit

The original – regular test – was ready to end at time 6484, but the envs didn’t want to exit until much later. This
kind of behavior is not a replacement for the normal uvm_objection drain_time. It’s just 4 more run_phase
synchronizations. This example is headed in the wrong direction. The recommendation is to use as few objections as
possible.

VI. MY_OBJECTION

What about a simpler objection? Something like a Barrier? A barrier prevents passage. The UVM has a barrier
implemented in uvm_barrier.svh. It’s 240 lines of code with debug and comments. Probably a worthwhile function,
certainly simpler than a uvm_objection but even simpler yet than uvm_barrier – a simple barrier defined as
class barrier;

int count;

task raise();
 #0;
 count = count + 1;

endtask

task drop();
 #0;

if (count == 0)
return;

 count = count - 1;
wait (count == 0);

endtask
endclass

The code is straightforward if not overly simple. The barrier has a count. In order to “pass” the barrier,
cooperating processes need to cause the count to go to zero by all calling the ‘drop’ routine. Originally they each
called the ‘raise’ routine. To be sure, there are many more improved implementations. The #0 is a kind of escapism
which allows a zero time example to work properly. (Not a realististic testbench – just an exercise in supporting all
timing modes).

This code is simple enough to try many different implementations – re-code it to improve it. Be careful to test
thoroughly lest the processes are starved or blocked. The diligent reader should improve the code, adding comments,
traceability and debugging hooks.

VII. USING MY_OBJECTION BY-NAME

Communicating processes are normally organized or coordinated by an “overseer” process – a guardian. The
guardian may start the processes and elect the communication. For example, three processes that are coordinated by
a guardian are told which objection or barrier to use. Two processes which share a critical region might have a
common mutex which a guardian process has initialized and assigned.

Another kind of coordination could be agreeing on “synchronization names” – such as “start”, “middle” and
“end”. Or “compress” and “uncompress”.

A simple class which uses an associative array indexed by strings will provide just this functionality.
Instead of using a barrier as b.raise_objection and b.drop_objection, the call would change to ua.raise(“start”) and

ua.raise(“middle”) and ua.raise(“end”). The barrier is “hidden” in the associative array – only known my its name –
“start” or “middle” or “end”.

The class wrapper creates the barrier class if needed and interested processes simply need access to the allocated
‘user objections’ class. That’s their coordinated handle. They share the handle and the various synchronization
points – by string name.

class user_objections;
 barrier barriers[string];

function barrier get(string name);
 barrier b;

if (barriers.exists(name)) begin
 b = barriers[name];

end
 else begin
 b = new();
 barriers[name] = b;

end
return b;

endfunction

task raise(string name);
 barrier b;
 b = get(name);
 b.raise();
 $display("...Raised %s", name);

endtask

task drop(string name);
 barrier b;
 b = get(name);
 b.drop();
 $display("...Dropped %s", name);

endtask
endclass

This simple wrapper has a raise, and drop and a get. Easy to see and understand.

VIII. SMALL EXAMPLE

The code snippets below are a class and a module. In the full example, there are two class instances – Class1 and
Class2, and 3 verilog modules – A, B and C. There are three “regions” or “phases” that are synchronized across the
modules and class instances – “start”, “middle” and “end”. Each object does “work” – it just spins in each
region/phase for a random amount of time, and then drops its objection. Once all have dropped, then processing
moves forward.

This small example has 5 main threads running – 3 always blocks from the modules and two forever loops from
the class objects. Each has a “start”, a “middle” and an “end”.
user_objections ua = new();

class Class1;
task body();

 forever begin
int n;

 n = $urandom_range(10, 1);
 ua.raise("start", thread_name);

for (int i = 0; i < n; i++) begin
 #n;

end
 ua.drop("start", thread_name);

 $display("@%t: %m done done done with %s", $time, "start");

 ua.raise("middle", thread_name);
 n = $urandom_range(10, 1);

for (int i = 0; i < n; i++) begin
 #n;

end
 ua.drop("middle", thread_name);

 $display("@%t: %m done done done with %s", $time, "middle");

 ua.raise("end", thread_name);
 n = $urandom_range(10, 1);

for (int i = 0; i < n; i++) begin
 #n;

end
 ua.drop("end", thread_name);

 $display("@%t: %m done done done with %s", $time, "end");
end

endtask
endclass

module a();
 initial begin

forever begin
int n;

 n = $urandom_range(10, 1);
 ua.raise("start", thread_name);

for (int i = 0; i < n; i++) begin
 #n;

end
 ua.drop("start", thread_name);

 $display("@%t: %m done done done with %s", $time, "start");

 ua.raise("middle", thread_name);
 n = $urandom_range(10, 1);

for (int i = 0; i < n; i++) begin
 #n;

end
 ua.drop("middle", thread_name);

 $display("@%t: %m done done done with %s", $time, "middle");

 ua.raise("end", thread_name);
 n = $urandom_range(10, 1);

for (int i = 0; i < n; i++) begin
 #n;

end
 ua.drop("end", thread_name);

 $display("@%t: %m done done done with %s", $time, "end");
 end
 end
endmodule

The top level
module top();
 a A();
 b B();
 c C();
 Class1 c1;
 Class2 c2;

 initial begin
 setup();
 c1 = new();
 c2 = new();

fork
 c1.body();
 c2.body();
 join_none

repeat(1000)
 #10;
 $finish(2);

end
endmodule

Upon running the simple example with the alternative “objection” mechanism, we can see that each object reports
after its call to “drop” has returned. The $display called after each drop call. Each object is ready to move forward
after that.

@ 81: t_sv_unit.Class1.body done done done with start
@ 81: t_sv_unit.Class2.body done done done with start
@ 81: top.A done done done with start
@ 81: top.B done done done with start
@ 81: top.C done done done with start

@ 145: top.C done done done with middle
@ 145: top.B done done done with middle
@ 145: t_sv_unit.Class1.body done done done with middle
@ 145: top.A done done done with middle
@ 145: t_sv_unit.Class2.body done done done with middle

@ 209: top.A done done done with end
@ 209: t_sv_unit.Class2.body done done done with end
@ 209: top.C done done done with end
@ 209: top.B done done done with end
@ 209: t_sv_unit.Class1.body done done done with end

@ 290: top.C done done done with start
@ 290: top.B done done done with start
@ 290: t_sv_unit.Class2.body done done done with start
@ 290: top.A done done done with start
@ 290: t_sv_unit.Class1.body done done done with start

Class1 and class2 are SystemVerilog class handles. A, B and C are Verilog module instances. The “payload” or
“work” performed by each of the objects in each phase is a simple model – random delays in a loop. But each object
is free to do as little or as much work as desired – the other phases can’t get ahead of the next barrier.

 ua.raise("start", thread_name);
for (int i = 0; i < n; i++)

 #n;
 ua.drop("start", thread_name);

$display("@%t: %m done done done with %s", $time, "start");

 ua.raise("middle", thread_name);
 n = $urandom_range(10, 1);

for (int i = 0; i < n; i++)
 #n;
 ua.drop("middle", thread_name);

$display("@%t: %m done done done with %s", $time, "middle");

 ua.raise("end", thread_name);
 n = $urandom_range(10, 1);

for (int i = 0; i < n; i++)
 #n;
 ua.drop("end", thread_name);

$display("@%t: %m done done done with %s", $time, "end");

Each phase is synchronized with the barrier / objection.

Below are visualizations - the “middle” phase and the work load for each object. Each “phase” – here the middle
phase – displays each object – “class1”, “B”, “A”, “class2” and “C”, in order, along with the payload for each
object.

Many phase begins and ends – all synchronized. It’s easy to debug the regions/phases – no overlap.

An expanded view – each phase details of the objects and payloads

IX. RECOMMENDATIONS
There’s no reason to avoid objections when considering the phasing of UVM. Objections and phasing are

inextricably linked. To change that relationship is certain to be a hardship. A lot of hard work went into getting it
working in the beginning. Use objections with phasing. Do limit phasing usage. Stick with the build, connect, run
phases – the run-time phases are not for the faint hearted (uvm_pre_reset_phase, uvm_reset_phase,
uvm_post_reset_phase, uvm_pre_configure_phase, uvm_configure_phase, uvm_post_configure_phase,
uvm_pre_main_phase, uvm_main_phase, uvm_post_main_phase, uvm_pre_shutdown_phase, uvm_shutdown_phase and

uvm_post_shutdown_phase). The recommendation is to avoid them. Creating your own phasing is also not
recommended.

But a way to create phasing – is to use a barrier. Use the uvm_barrier – or something much simpler – the
objection-by-name in the example above. Or write your own. Writing a fit-for-purpose widget is a good idea to
understand the problem you are trying to solve. Synchronization is a simple problem. It should have a simple
solution.

X. WARNINGS
Some users put raise_objection() and drop_objection() pairs in code sections that are executed frequently – for

example on a positive edge of a clock. Or in the start_item/finish_item of a sequence. Be careful. Raise_objection
and drop_objection() can be very slow.

Merging OVM phasing and UVM phasing is possible but will require quite an effort. A few users have done it
successfully, but the code has many race conditions due to thread execution order – all LRM compliant, but terrible
to debug. While not a true objection related issue, the synchronization of phasing is a hard thing to do – marrying
OVM and UVM makes it harder.

XI. CONCLUSION
The uvm_objection is a powerful tool. It is used widely – in most UVM testbenches. But be careful. With the right

set of calls it can hang itself without any testbench or DUT.

The simple alternative code offered here can also hang itself if not written and used correctly. Experimenting with
this code or other synchronization constructs is instructive in synchronization but also in how SystemVerilog spoofs
a real parallel machine.

Use uvm_objections wisely. Source code is available by request from the author.

XII. REFERENCES
[1] UVM - 1800.2-2020 - IEEE Standard for Universal Verification Methodology Language Reference Manual,

https://ieeexplore.ieee.org/document/9195920 , source code: https://www.accellera.org/downloads/standards/uvm
[2] SystemVerilog - 800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language,

https://ieeexplore.ieee.org/document/8299595
[3] Synchronization primitives in Wikipedia, https://en.wikipedia.org/wiki/Synchronization_(computer_science)#Barriers
[4] “OVM & UVM Techniques for Terminating Tests”, Clifford E. Cummings, Sunburst Design, Inc. and Tom Fitzpatrick, Mentor

Graphics, DVCON US 2011 (58 pages), http://www.sunburst-
design.com/papers/CummingsDVCon2011_UVM_TerminationTechniques.pdf

[5] “Shutdown with Agreements in a UVM Testbench”, Mark Glasser, NVIDIA Corporation, SNUG 2017 (16 pages), contact author.

