
What’s Next for SystemVerilog in the

Upcoming IEEE 1800 standard

Dave Rich
Dave.Rich@siemens.com

Abstract-The last revision of the SystemVerilog LRM was completed in 2016 and published as IEEE 1800-

2017. In the time since, tool vendors have continued to extend and make clarifying changes to their

implementations. That leaves users and other tool vendors with unclear specifications on how to interpret

SystemVerilog code. The next revision of the standard (P1800-2023) intends to address many of these issues

to keep the language current. This paper reviews some of the high-level goals for the next revision as well as

highlights a few key enhancements.

I. Introduction

Between the Accellera Systems Initiative and the IEEE, there have been seven revisions of the SystemVerilog

Language Reference Manual (LRM) over the past 20 years [1]. Five of those revisions were in the first 10 years.

Many users avoid adopting SystemVerilog because feature support from different tools and vendors of the rapidly

changing LRM had been so inconsistent. To this day, people continue using Verilog-1995 [2] syntax and avoid

using features added by Verilog-2001 [3] (e.g., ANSI-style ports and the power operator). So, brakes were put on the

SystemVerilog LRM process, giving vendors a chance to catch up and giving users the stability they wanted. The

last time any of the IEEE SystemVerilog technical committees met to add changes to the LRM was at the end of
2016. The result of this work was the publication of the IEEE 1800-2017 [4] standard.

However, technology never stands still. Over the last several years, vendors have made extensions to their tools

based on demands from customers, and the users are left with a hodgepodge of features with no or incomplete

documentation. For example, some tools allow many more built-in functions (like $sformatf) to be used in a

constant expression even though the LRM explicitly does not allow it. You won’t know which ones your tool

supports until you try them. Other users simply won’t wait for any extensions and begin working around language

limitations by creating extra code packages or incorporating other languages into their flow (Chisel, Perl, Python,

Ruby,…). Don’t expect SystemVerilog to be the number one language choice for every design and verification

project out there. Still, every language must evolve to improve and stay relevant. And developers want to protect

their investment in the verification IP they develop for as long as possible.

Under the auspices of the IEEE, a project “P1800” to craft the next revision of the SystemVerilog was created in late

2019 [4]. “P” is for “Proposed standard” and the current plan is to finalize the work and make it available to the

public in 2024. After a two-year delay due to the worldwide pandemic, a “Working Group” made of end users and

tool vendor companies formed to submit issues on behalf of themselves or indirectly through affiliated companies.

This IEEE working group uses an issue tracking system called Mantis [5]. The group enters issues into the Mantis

database that are categorized into a few major types:

• Enhancements—New features that extend the capabilities of the current language. These enhancements

may already be implemented in some tools or be completely new to the language. In many cases they have

been “borrowed” from other languages, so their use models are well known.

• Errata—Obvious mistakes in the current LRM. They could be as small as typographical editing errors or as

large as contradictions in the text between LRM sections because a previous update failed to capture all

places that needed to be changed. Sometimes the current wording of the LRM is obviously incorrect and

tools have implemented what the LRM should have said in the first place.

• Clarifications—Missing or misleading text for a particular use case where the LRM is ambiguous. This

normally does not involve a change to a tool’s behavior unless tools implemented something very different

from what was originally intended.

As of the publication date of this paper, 26 enhancements, 109 errata, and 61 clarifications have been approved by

the committee for the next revision of the standard. These categories are not always distinct. Many enhancements

uncover existing errata issues or require other clarifications. Sometimes an issue filed as an enhancement becomes

just a clarification. The sections that follow highlight just a few significant issues from each category.

II. Enhancements
A. Extending coverpoints (Mantis 4703)

One of the most often requested enhancements, and my primary motivation for getting this project started is

extending covergroups. Covergroups without inheritance is considered by many an unfinished feature. When

extending a class, you can add new class members and override existing ones in the base class; the same holds true

for constraints in classes. When embedding covergroups in classes, they are effectively additional class members. It

seems obvious that the same principles should have been applied to covergroups. This comes up frequently when

creating verification IP base class libraries and these libraries need to be extended to handle customizations for

different usage configurations.

Two of the most critical features enabled by this enhancement are:

• Adding a new coverpoint in an extended class and then crossing it with an existing coverpoint in the base

class. Currently, you must replicate the coverpoint in the base class to the extended class and cross it with

the new coverpoint.

• Replacing the bin structure of an existing coverpoint or removing it entirely.

The enhancement would allow syntax such as:

class pixel;

 bit [7:0] level;

 enum {OFF,ON,BLINK,REVERSE} mode;

 covergroup g1;

 a: coverpoint level;

 b: coverpoint mode;

 endgroup

 function new();

 g1 = new;

 endfunction

endclass

class colorpixel extends pixel;

 enum {red,blue,green} color;

 covergroup extends g1;

 b: coverpoint mode { // the coverpoint ‘b’ from the base class is changed

 ignore_bins ignore = {REVERSE};

 }

 cross level, color; // ‘level’ comes from the base class

 endgroup

endclass

B. Unpacked array mapping function (Mantis 7610)

SystemVerilog allows you to work with arrays (aggregates) as a whole. However, it limits you to comparison and

assignment operators, as well as working only on unpacked arrays having equivalent element types. Borrowing from

other languages such as Python, the array map function allows you to cast each element to a new type, as well as

perform any operation on each element.

Like the other array manipulation methods (see section 7.12 of [4]) , the map() method iterates over each element

using a with() expression and provides implicit variables item and item.index. It returns a new array with each

element having the type of that expression. Here are a few examples:

int A[3] = {1,2,3};

byte B[3];

int C[3];

// assigns and casts array of int to an array of byte

B = A.map() with (byte’(item));

// increments each element of the array (use b instead of item)

B = B.map(b) with (b + 8’b1); // B becomes {2,3,4}

// Add two arrays

C = A.map(a) with (a + B[a.index]); // C becomes {3,4,5}

C. `ifdef Boolean combination of identifiers (Mantis 1084)

This request precedes the publication of the first SystemVerilog LRM [3]. Enhancements related to the preprocessor

have been very difficult to address because of many ambiguities in this area of the existing LRM (See Mantis 1014

in the Clarifications section).

Verilog has a simple `ifdef scheme where you specify a single macro name to test if it is defined or not. There is

no way to combine testing multiple definitions with nesting multiple `ifdefs or creating intermediate define

macros. Assuming there are two potential macro definitions A and B, in the existing Verilog LRM you would have

to write

// AND

`ifdef A

 `ifdef B

 `define A_and_B

 `endif

`endif

`ifdef A_and_B

 // code for AND condition

`endif

// OR

`ifdef A

 `define A_or_B

`endif

`ifdef B

 `define A_or_B

`endif

`ifdef A_or_B

 // code for OR condition

`endif

With this enhancement, you can use a simple Boolean expression enclosed in parentheses

`ifdef (A && B)

 // code for AND condition

`endif

`ifdef (A || B)

 // code for OR condition

`endif

Note the value of the definition is not being tested, only the state of its definition. In C/C++, this would be

equivalent to:

#if defined(A) && defined(B)

D. Add support for multiline strings (Mantis 7308)

The basic premise of this request is allowing multi-line and quoted string within a string literal.

string x = """

This is one continuous string.

Single ' and double " can

be placed throughout, and

only a triple quote will end it.

"""

This feature makes it easier to write informative or self-documenting messages so they can be easily read and

maintained within the source code.

The enhancement request seemed to be simple on the surface wound up entangled with many older issues

surrounding it.

• Multi-line string literals in a text macro (Mantis 1397)

• Special characters in strings (Mantis 1507)

• “Printable” characters (Mantis 7562)

E. Real number modeling (Mantis 7295 and 7669)

SystemVerilog was formed around the concept of being a digital logic design and verification language. That means

most constructs and operators expect expressions to break down into discrete integral or Boolean values.

Constraints, assertions, and covergroups rely heavily on equality expressions. Real numbers introduce irregularities

with expressions like (0.1 + 0.2) == 0.3 can never evaluate true because these floating-point values cannot be

accurately represented in a binary number system.

Adding real numbers to random variables and constraints involves lifting the existing restrictions from integral to

allow for real types. Distributions of floating-point ranges can only deal with weights over the entire rage using

[1.0:3.0]:/weight. It makes no sense to allow the other distribution := syntax which would have applied the

weight to every value in the range. There are an infinite number of discrete values in the range between two real

numbers; thus, the weight of the range would be infinite.

Adding real numbers to covergroup requires a little more consideration. Coverage bins by their very nature represent

discrete sets of values. A new option real_interval helps break up floating-point ranges into nonoverlapping

bin sets.

coverpoint r {

 type_option.real_interval= 0.01;

 bins b[] = {[0.75:0.85]}; // 10 bins

 // b[0] 0.75 to less than 0.76

 // b[1] 0.76 to less than 0.77

 // . . .

 // b[9] 0.84 to less than or equal to 0.85

}

F. Chaining of method calls (Mantis 2735)

This feature allows you to use the result of a function to serve as an intermediate variable for selecting a member of

the result. It is mainly used when the result is a handle to a class.

It may come as a surprise that this was not already included in the LRM as many tools have been supporting some

form of it for a while. Now it is properly defined. One of the major issues with this feature is keeping backward

compatibility with Verilog. It allows hierarchical reference to static variables declared inside a function from outside

that function. To distinguish a hierarchical reference from an intermediate variable, you must use parentheses “()” in

the function call even when there are no arguments.

class A;

 int member=123;

endclass

module top;

 A a;

 function A F(int arg=0);

 int member; // static variable uninitialized value 0

 a = new();

 return a;

 endfunction

 initial begin

 $display(F.member); // 0 – No "()", Verilog hierarchical reference

 $display(F().member); // 123 – With "()", implicit variable

 end

endmodule

The first $display statement prints the value of a hierarchical reference to the static variable top.F.member,

whose value is 0. The second $display statement calls the function F, whose return value gets used to select the

class A variable member, whose value is 123.

G. Adding static ref arguments (Mantis 2583)

A ref argument of a time-consuming task tracks values updating between the actual arguments passed into a task

and formal arguments defined inside the task during the lifetime its call. In contrast, actual input argument passes

its value only at the point in time when the task gets called. Implementing a ref argument places more restrictions

than passing an arguments value because the code inside the task has no knowledge of the actual argument’s

declaration. One restriction is the actual and formal argument’s type must match; it is not enough just to be

assignment compatible. Another restriction is the task must assume the actual argument’s lifetime is automatic. The

consequence of that means there are several other restrictions on what you cannot do with variables declared with

automatic lifetimes. An argument passed by reference cannot

• Be the target of a nonblocking assignment.

• Have a reference on the LHS or RHS of force statement.

• Be referenced from within a fork join_any/join_none process.

This enhancement adds a static qualifier to a formal ref argument so the task or function can be assured the

actual argument has a static lifetime (it would be an error to pass a variable with an automatic lifetime as an

actual argument).

module top;

 function void monitor(ref static logic arg);

 fork // the reference to arg only becomes legal with a static qualifier

 forever @(arg) $display(“arg changed at time %t”, arg, $realtime);

 join_none

 endfunction

 logic C;

 initial monitor(C);

endmodule

III. Errata

A. @(clocking_block_name) is unequal to its associated clocking event (mantis 7172)

The current LRM has this brief example in section 14.10 (Clocking block events)

clocking dram @(posedge phi1); inout data;

output negedge #1 address; endclocking

The clocking event of the dram clocking block can be used to wait for that particular event:

 @(dram);

The preceding statement is equivalent to @(posedge phi1).

However, this cannot be true since section 14.13 says the dram event gets triggered in the observed region and the

posedge phi1 gets triggered in the active region. So, the example was expanded with a more detailed

explanation:

always @(posedge phi1) $display("clocking event");

always @(dram) $display("clocking block event");

The first always procedure in the preceding example executes in the same Active or Reactive event

region as the positive edge of phi1. In contrast, the second always procedure executes after the

Observed region following that Active or Reactive event region. This behavior can be used to avoid race

conditions when sampling input data, see 14.13 for more details.

B. non-integral function actual argument allowed in a constraint expression (mantis 2841)

The current LRM says this about constraints in section 18.3:

“Constraints can be any SystemVerilog expression with variables and constants of integral type (e.g., bit,

reg, logic, integer, enum, packed struct).”

Section 18.5.13 (Constraint guards) already contradicts this with object handles, but there are many scenarios where

there is not a problem using non-random non-integral expressions. For example, a real typed threshold variable

requires the user to create and initialize a separate integral variable. Only this can be used in the constraint.

class A;

 rand bit [8:0] randvar;

 real threshold;

 int intvar;

 function void pre_randomize();

 intvar = int’(threshold);

 endfunction

 constraint c{ randvar < intvar; }

endclass

Mantis 2841 allows the above to be written as:

class A;

 rand bit [8:0] randvar;

 real threshold;

 constraint c{ randvar < int’(threshold); }

endclass

IV. Clarifications

A. Unclear which compiler directives must be alone on a line (Mantis 1014)

Like Mantis 1084, this is a clarification request carried over from the Verilog 1364 standardization effort. Compiler

directives have always been a weak point and considered underspecified in the LRM. Another enhancement request

for multi-line strings brought the priority of this issue to the forefront. One of the most common places this comes

up is with conditional compilation

`ifdef NAME text `endif

Support for this structure of directives was unclear in the existing LRM and has been clarified. Most tools have

already been supporting this.

B. Definition of term "blocking statement" (Mantis 225)

One of the oldest issues to be clarified, the term “blocking” is well understood by experienced users but was never

properly defined. This is particularly a problem because the word “block” is a homonym with multiple unrelated

meanings. Within this standard, a “block” could be used as a noun to describe a set of connected conceptual

elements, or as a verb, a construct that suspends execution of a process.

The term “blocking statement” in most cases refers to a construct having the potential to suspend a process. But this

is further complicated using the terms “non-blocking assignment” which is never a blocking statement, and a

“blocking assignment” which is only sometimes a blocking statement.

The three terms, “blocking statement”, “non-blocking assignment”, and “blocking assignment” have been clarified

in the upcoming standard, as shown in by the illustrative examples below:

A <= #1 2; // non-blocking assignment, not a blocking statement

A = 3; // blocking assignment, not a blocking statement

A = #4 5; // blocking assignment, a blocking statement

C. Packed array shortcut – (Mantis 325)

This issue originally started out as an enhancement request.

Verilog declares array ranges with pairs of index values. For packed arrays or integral vectors, the left index value

represents the most significant bit(MSB), and the right index is the least significant(LSB). Integral vectors are

normally declared using a LSB 0 bit numbering scheme when the index of the LSB is 0 (or little bit endian), and the

index of the MSB is the width of the vector minus 1. Thus, the bit index position i represents the 2i value of the

vector.

bit [7:0] v = 8’b10000000; // 8-bit wide vector, v[7] = 1, 27 = 128

Unpacked arrays are also declared with pairs of index values. However, since most references to unpacked arrays

only select one element at time, or select the entire array as a whole, element 0’s position is not as important. It does

matter when loading the array from an external file or streaming to another array with a different index ordering.

SystemVerilog has a shortcut for declaring unpacked arrays ranges with a single number, as in C/C++. The

following two declarations are equivalent:

int A[0:99];

int A[100]; // This shortcut implies that the left index is 0

Note that int is a shortcut for bit signed [31:0] with the index 0 bit being the LSB. There are also several

implicit packed declarations that use the index 0 for the LSB numbering (packed structs and unions, concatenation

expression part selects). This enhancement request asked for the same shortcut syntax for declaring packed arrays

with a single number. For example:

bit [8] v = 8’hab; // Proposed shorthand for bit [7:0] v = 8’hab;

But there was uncertainty as to whether the shortcut should be little bit endian to match packed arrays or big bit

endian to match the index ordering of the unpacked array shortcut. In the end, the committee decided the potential

confusion this enhancement would create was not justified and in fact the LRM now provides further clarity stating

the array declaration shortcut only applies to unpacked arrays.

IV. Summary

This paper has presented just a few of the many changes in the upcoming IEEE SystemVerilog standard. I have

pointed out the process the Working Group goes through to address each individual issue. Many issues the group

goes through and not discussed here require no changes because they were found to be already addressed by other

issues, unnecessary because they were easily covered by other features, or out of scope for the current updated

standard proposal. Note the P1800-2023 is not a formally approved IEEE standard. All the features mentioned here

are subject to final IEEE balloting approval.

V. References

[1] Goering, Richard, "Successor to Verilog approved as Accellera standard," 4 June 2002. [Online]. Available:

https://www.eetimes.com/successor-to-verilog-approved-as-accellera-standard/. [Accessed 26 October 2022].

[2] "IEEE Standard Hardware Description Language Based on the Verilog® Hardware Description Language," in

IEEE Std 1364-1995 , pp.1-688, 14 Oct. 1996.

[3] "IEEE Standard Verilog Hardware Description Language," in IEEE Std 1364-2001, pp.1-792, 28 Sept. 2001.

[4] "IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language," in

IEEE Std 1800-2017, pp.1-1315, 22 Feb. 2018.

[5] Accellera, "Accellera Mantis Database," [Online]. Available:

https://accellera.mantishub.io/my_view_page.php. [Accessed 25 October 2022].

	I. Introduction
	II. Enhancements
	A. Extending coverpoints (Mantis 4703)
	B. Unpacked array mapping function (Mantis 7610)
	C. `ifdef Boolean combination of identifiers (Mantis 1084)
	D. Add support for multiline strings (Mantis 7308)
	E. Real number modeling (Mantis 7295 and 7669)
	F. Chaining of method calls (Mantis 2735)
	G. Adding static ref arguments (Mantis 2583)

	III. Errata
	A. @(clocking_block_name) is unequal to its associated clocking event (mantis 7172)
	B. non-integral function actual argument allowed in a constraint expression (mantis 2841)

	IV. Clarifications
	A. Unclear which compiler directives must be alone on a line (Mantis 1014)
	B. Definition of term "blocking statement" (Mantis 225)
	C. Packed array shortcut – (Mantis 325)

	IV. Summary
	V. References

