
What’s Next for SystemVerilog in
the Upcoming IEEE 1800 standard

Dave Rich
Siemens EDA

Revisions of Verilog

Verilog
IEEE 1364-1995

Verilog
IEEE 1364-2001

Verilog
IEEE 1364-2005

SystemVerilog
IEEE 1800-2009

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

• Verilog 1.0 released 1985
• SystemVerilog 1800-2009

supersedes Verilog

Revisions of SystemVerilog

Verilog
IEEE 1364-1995

Verilog
IEEE 1364-2001

SystemVerilog
Accellera 3.0

SystemVerilog
Accellera 3.1a

SystemVerilog
IEEE 1800-2005

Verilog
IEEE 1364-2005

SystemVerilog
IEEE 1800-2009

SystemVerilog
IEEE 1800-2012

SystemVerilog
IEEE 1800-2017

SystemVerilog
IEEE P1800-2023

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

New and

Improved!

Trusted

and

Proven!

Which side of the technology fence are you on?
• Stability with existing tool ecosystems
• Need improvements for increased productivity

IEEE P1800 SystemVerilog Working Group

• Entity based group of end users and tool vendors formed in 2020
• Accellera, ARM, Cadence, Infineon, Intel, JEITA, Marvell, Nvidia, Qualcomm,

Siemens, Sigasi, TI, Verific

• Gathered issues to be addressed and published by the end of 2023
• Publish in 2024

• Mantis Issue Tracking Database
• https://accellera.mantishub.io
• 3300+ issues captured since 2004
• 1100+ issues still open

https://accellera.mantishub.io/

Issue categories

• Enhancements—New features extending the capabilities of the language
• May already be implemented in some tools or, completely new features
• “Borrowed” from other languages; use models are well known

• Errata—Obvious mistakes in the current LRM
• Small typographical or editing errors
• Large contradictions in the text between different LRM sections
• Sometimes current wording of the LRM is obviously incorrect and tools have

implemented what the LRM should have said in the first place
• Clarifications—Missing or misleading text where the LRM is ambiguous

• Normally does not involve a change to a tool’s behavior unless tool implements
something very different from original intent

Enhancements

• Extending coverpoints (Mantis 4703)
• Unpacked array mapping function (Mantis 7610)
• `ifdef Boolean combination of identifiers (Mantis 1084)
• Add support for multiline strings (Mantis 7308)
• Real number modeling (Mantis 7295 and 7669)
• Chaining of method calls (Mantis 2735)
• Adding static ref arguments (Mantis 2583)

Extending coverpoints (Mantis 4703)
• Allow adding a new coverpoint in an extended class and crossing it with an

existing coverpoint in the base class
• Replacing the bin structure of an existing coverpoint or removing it entirely

class pixel;
bit [7:0] level;
enum {OFF,ON,BLINK,REVERSE} mode;
covergroup g1;
a: coverpoint level;
b: coverpoint mode;

endgroup
function new();
g1 = new;

endfunction
endclass

class colorpixel extends pixel;
enum {red,blue,green} color;
covergroup extends g1;
b: coverpoint mode { // the coverpoint
// ‘b’ from the base class is changed
ignore_bins ignore = {REVERSE};

}
cross level, color; // ‘level’ comes

// from the base class
endgroup

endclass

Unpacked array map function (Mantis 7610)

• Assignments between arrays with inequivalent types
• Create new arrays based on operations with each element

int A[3] = {1,2,3};
byte B[3];
int C[3];
// assigns and casts array of int to an array of byte
B = A.map() with (byte’(item));
// increments each element of the array (use b instead of item)
B = B.map(b) with (b + 8’b1); // B becomes {2,3,4}
// Add two arrays
C = A.map(a) with (a + B[a.index]); // C becomes {3,4,5}

`ifdef Boolean combination of identifiers
(Mantis 1084)
• Create simple Boolean conditional expressions ‘and’ (&&) ‘or’ (||)
• Replaces layers of intermediate macro definitions

// AND
`ifdef A

`ifdef B
`define A_and_B

`endif
`endif
`ifdef A_and_B

// code for AND
`endif

// OR
`ifdef A

`define A_or_B
`endif
`ifdef B

`define A_or_B
`endif
`ifdef A_or_B

// code for OR
`endif

`ifdef (A && B)
// code for AND condition

`endif
`ifdef (A || B)

// code for OR condition
`endif

Support for multiline strings (Mantis 7308)
• Easier to write informative or self-documenting messages so they can

be easily read and maintained within the source code.
• Required addressing many existing, older issues:
• Multi-line string literals in a text macro (Mantis 1397)
• Special characters in strings (Mantis 1507)
• “Printable” characters (Mantis 7562) string x = """

This is one continuous string.
Single ' and double " can
be placed throughout, and
only a triple quote will end it.
"""

Real number modeling issues
(Mantis 7295 and 7669)
• Real number binary format creates many problems for expressions
• Decimal 0.1 is binary repeating pattern 0.00011001100110011...
• Round-off errors to 52-bits of precision means that 0.1 + 0.2 ≠ 0.3

• Constraints and covergroup expressions were designed around
discrete values and ranges
• Use tolerances instead of equality

for complex expressions with reals
rvalue == 0.3 // for simple constraints
rexp inside {[0.3 +/- 0.003]}
rexp inside {[0.3 +%- 1]}
// equivalent to
rexp inside {[0.297:0.303]}

Reals in Constraints and Covergroups

• Reals in constraints is just relaxation of rules
• No new syntax or rules

• Reals in coverpoints requires new bin options and range rules
• option real_interval instead of discrete values

type_option.real_interval = 0.2;
coverpoint rvalue { // requires explicit bins
bins a = {0.3 +%- 1}; // 1 bin {[0.297:0.303] }
bins b[] = {[1.0:1.5]}; // 3 bins

} // = 1.0 < 1.2
// = 1.2 < 1.4
// = 1.4 <= 1.5

Chaining of method calls (Mantis 2735)
• Use the result of a function to serve as an intermediate variable for

selecting a member of the result
• Mainly used when the result is a handle to a class.

module top;
A a;
function A F(int arg=0);

int member; // static variable uninitialized value 0
a = new();
return a;

endfunction
initial begin

$display(F.member); // 0 – No "()", Verilog hierarchical reference
$display(F().member); // 123 – With "()", implicit variable

end
endmodule

class A;
int member=123;

endclass

Adding static ref arguments (Mantis 2583)
• Removes many restrictions on pass-by-reference arguments
• Become the target of a nonblocking assignment.
• Have a reference on the LHS or RHS of force statement.
• Be referenced from within a fork join_any/join_none process.

module top;
function void monitor(ref static logic arg);
fork // the reference to arg only becomes legal with a static qualifier
forever @(arg) $display(“arg changed at time %t”, arg, $realtime);

join_none
endfunction
logic C;
initial monitor(C);

endmodule

Errata

• @(clocking_block_name) is unequal to its associated clocking event
(mantis 7172)
• non-integral function actual argument allowed in a constraint

expression (mantis 2841)

@(clocking_block_name) is unequal to its
associated clocking event (mantis 7172)
• The current LRM has this brief example in section 14.10:

• Cannot be true since section 14.13 says the dram event gets triggered
in the observed region

clocking dram @(posedge phi1); inout data;
output negedge #1 address; endclocking
The clocking event of the dram clocking block can be used to wait for that particular event:
@(dram);

The preceding statement is equivalent to @(posedge phi1).

always @(posedge phi1) $display("clocking event");
always @(dram) $display("clocking block event");
The first always procedure in the preceding example executes in the same Active or
Reactive event region as the positive edge of phi1. In contrast, the second always
procedure executes after the Observed region following that Active or Reactive event region.
This behavior can be used to avoid race conditions when sampling input data, see 14.13 for
more details.

Corrected

Non-integral function actual argument allowed in
a constraint expression (mantis 2841)
• The current LRM says this about constraints in section 18.3

• Section 18.5.13 (Constraint guards) already contradicts this with
object handles
• Not a problem as long as non-random expression result in an integral

type

Constraints can be any SystemVerilog expression with variables and constants of integral
type (e.g., bit, reg, logic, integer, enum, packed struct).

class A;
rand bit [8:0] randvar;
real threshold;
constraint c{ randvar < int’(threshold); }

endclass

Clarifications

• Unclear which compiler directives must be alone on a line (Mantis
1014)
• Definition of term "blocking statement" (Mantis 225)
• Packed array shortcut – (Mantis 325)

Unclear which compiler directives must be
alone on a line (Mantis 1014)
• Entangled with many other issues
• LRM mentions “lines of text” but newlines are only relevant in
• Single quoted strings “I’m a string”
• Single line comments // I’m a comment
• End of macro definitions `define

`ifdef NAME text `endif

Definition of term "blocking statement"
(Mantis 225)
• “block” could be used as a noun to describe a set of connected

conceptual elements, or as a verb, a construct that suspends
execution of a process.
• Clarified the three terms, “blocking statement”, “non-blocking

assignment”, and “blocking assignment”
A <= #1 2; // non-blocking assignment, not a blocking statement
A = 3; // blocking assignment, not a blocking statement
A = #4 5; // blocking assignment, a blocking statement

Packed array shortcut – (Mantis 325)

• Started out as an enhancement or clarification request

• Now explicitly illegal for packed arrays – not worth the confusion

bit [7:0] v = 8’b10000000; // 8-bit wide vector, v[7] = 1, 27 = 128
int A[0:99];
int A[100]; // This shortcut implies that the left index is 0

bit [8] v = 8’hab; // Proposed shorthand for bit [0:7] v = 8’hab;
// or should it be bit [7:0] ???

int is shortcut for bit signed [7:0]
{expression}[0] is LSB of expression

Work Completed to Date
Enhancements

32 - 16%

Errata
109 - 54%

Clarifications
61 - 30%

Closed 180 issues not
requiring any action

Thank You

• Questions?

