
1

Random Testcase Generation and Verification of
Debug Unit for a RISC-V Processor Core
Sneha Mishra, Lu Hao, Ajay Sharma, Afshan Anjum,

Lucia Franco, Sourav Roy, Jeff Scott

2

Table of contents
• Design-Under-Test (DUT)

• Verification Challenges & Solution
• RAPTOR - Random test case generator

• Verification methodology
• Debug verification environment overview
• Verification Targets

• Run control and External Triggers
• Data and Instruction Triggers
• Abstract command and Program Buffer execution

• Debug Checkers

• Results and Coverage

3

Design-Under-Test (DUT)

▪ CPU can be debugged from

the very first instruction

▪ RUN Control:

- Halt, resume

- Single-step

▪ Halt groups, Resume groups

and External Triggers

▪ Instruction and data triggers

(breakpoints and watchpoints)

▪ Abstract commands:

- Register transfer

- Program buffer execution

4

Verification challenges
• Putting the core in different configurations with varying mix of instructions in

core’s pipeline, along with external stimuli such as interrupts, debug exceptions,
bus faults, and then bombarding with debug requests randomly during simulation

• Exercising random instruction stream within debug mode session with varying
debug control configurations

• Correctness checking. Involves synchronizing of the asynchronous events with the
functional model, generating correct set of expectations in terms of registers and
memory updates

5

RAPTOR - Random test case generator

• Provides a specific language that offers well-known control flow structures
(i.e., if, while, foreach, etc.) and supports querying generator and processor
state, thus allowing users to dynamically bias or change the test flow
during runtime based on current conditions.

• Instruction randomization
• Generate instructions randomly but under user constraints

• Events randomization
• If a register is modified during the debug session, the state of the processor is

modified. The simulation would then deviate from the intended test flow and would
produce a failure.

• We need to handle this case when incorporating non-recoverable debug events into
the test creation flow in Raptor

6

RAPTOR - Random test case generator

7

Verification Methodology

A. Debug Verification Environment

B. Verification Target – Run Control and External Triggers

C. Verification Target – Data and Instruction Triggers

D. Verification Target – Abstract Command and Program Buffer
Execution

E. Debug Checkers

8

Pre-simulation

Raptor Macro file

Raptor

Random testcase (UVP)

functional

model

Post-simulation

functional model model trace

Simulation

RTL Simulation Events file

Compare

RTL trace

Debug Verification Environment

9

Verification Target – Run Control and External Triggers

CPU

DBG_ENV

Debug

Parsed

UVP

RTL trace

module

Event

synchronizer

REG

ADAPTER

EXT TRIG

DRVR

DBG SEQR
Usage of un-

architected registers

for synchronization

Functional

model

Raptor

Macro file

(raptor)

Ext Trig Interface

Programming

Interface

active() {

haltreq()

repeat (tx.loop) {

case tx.cmd:

HLT_RSM_REQ

STEP

TRIGGER_CFG

CMDERR

DMCS2_CFG

NOP

}

resumereq()

}

passive() {

@(dmstatus.halted==1);

resumereq();

}

DBG CHECKER

10

• Instruction trigger
tdata2 = PC + random_range(<start_addr> , <end_addr>);
tdata1 = random_range(0 , 0xFFFFF);
repeat(count) {

call any_inst(); // select instruction randomly from instruction list
}

• Data trigger
tdata2 = random_range(<start_addr> , <end_addr>);
tdata1 = random_range(0 , 0xFFFFF);
gpr10 = tdata2;
Repeat (count) {

call ld_st(addr=gpr10); // randomly generate a load/store insruction; GPR10 contains the target address
call any_inst(); // select instruction randomly from instruction list

}

• The above macros are called in different raptor menus in conjunction with async inputs like external
interrupts, halt requests, load store faults etc.

Verification Target – Data and Instruction Triggers

11

Verification Target – Abstract Command and Program Buffer Execution

#1 "MRET“ // Instruction #1

#2 "SH 14,29,0xe08" // Instruction #2

#E1 progbuf0=>0x8a3c18a3 // Event #1: write to progbuf0

#E2 command=>0x240000 // Event #2: abstract command - execute program buffer

..

..

#8 "CSRRS 0,28,0x342" // Instruction #8

#E3 dmcontrol=>0x80000001 // Event #3: write to dmcontrol

#E4 progbuf1=>0xdab6aa23 // Event #4: write to progbuf1

#E5 command=>0x240000 // Event #5: abstract command - execute program buffer

..

..

#15 "SW 10,27,0xdf5“ // Instruction #15

#E6 dmcontrol=>0x80000001 // Event #6: write to dmcontrol

#E7 data0=>0xdab6da6a // Event #7: write to data0

#E8 command=>0x2307a2 // Event #8: abstract command – write to a CSR register

Tarmac module

CPU

@(instruction_completed_uvp==inst_num);

save_context();

@dmstatus.halted==1;

restore_context();

inst_completed

monitor Programming

Interface
Debug_Interface

Example UVP file

UVM Sequence

dbg_asm_d

ata_Q

dbg_asm_re

g_Q

inst_count_

Q

0x8a3c18a3 progbuf0 2

0xdab6aa23 progbif1 8

0xdab6da6a data0 15

12

Verification Target – Abstract Command and
Program Buffer Execution
• Raptor provides users several ways to place instructions in the

program buffer. For example:
• a) progBuff(”progbuf0”, 0x123452b7); // direct opcode

• b) progBuff(”progbuf1”, ‘call # LH(realAddr=0x9000)); // biased-random
instruction: load from address 0x9000

• c) progBuff(”progbuf2”, instr()); // function call contains biased instructions

• d) progBuffs(instrs()); // function call containing multiple biased instructions

13

• Exhaustive checking of signal-level protocol
• CPU and debug interactions

• Debug state transitions (halt request, resume ack, etc)

• External notification on the output port for non-debug trigger actions

• Number of steps during single stepping

Debug Checkers

DEBUG MODULE RTL

monitormonitor

Checker

compare

Input Port Output Port

o/p queuei/p queue

14

Results and Coverage
• Achieved high coverage of the debug module

• Achieved 100% functional coverage of the debug module. E.g. coverage of triggers and
instructions executed from the program buffer.

• Achieved 100% code coverage utilizing random verification and Unreachability (UNR) analysis
with formal tools.

• Multiple corner case bugs and interesting architectural issues around custom
instructions

• Several interesting scenarios were unearthed that were not thought of during
conventional directed verification of the debug module

• Program buffer execution of various categories of instructions in different privilege modes
• Debug features crossed with other external stimuli like interrupts, bus faults etc.
• Debug features crossed with decode class exceptions (ecall, mis-aligned faults etc.)
• Debug features crossed with low power mode stimuli
• External debug and internal debug mode cross scenarios

15

Results and Coverage

16

Questions

