(2023

DESIGN AND VERIFICATION™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

What | Wish My Regression Run Manager’s
Vendor Knew!

Brian Craw - Infineon Technologies

David Crutchfield - Infineon Technologies .
Jason Lambirth - Infineon Technologies

Presenter Notes
Presentation Notes
Good afternoon, everyone. Thanks for attending.

I'm Brian Craw from Infineon Technologies and together with my colleagues David Crutchfield and Jason Lambirth we put together this paper outlining our experiences in using two of the major EDA vendor's regression management tools. We are part of Infineon's central organization providing digital verification methodology and tool support for the company.

Agenda

I BACKGROUND

| CONTROLFILES
REPORTING
OUTPUT STRUCTURE

CENTRAL SERVER

CONCLUSION

accelleray

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
In our history we've had the opportunity to enable both Siemens Questa Verification Run Manager and Cadence vManager regression management tools.

The issues, solutions, and lessons learned outlined in this paper are a direct result of our experience with setting up, deploying, supporting, and maintaining these tools.

This paper is not intended as an exhaustive comparison between these tools but rather a documenting of our experience with the major features of each.

To start I will give some background on how we have standardized the use of these tools. Then I will provide more details on a few specific areas we find most interesting.

.

Backgrou nd

* Want a common "look-and-feel" across the company

* Why"?
* Increase Verification Engineer efficiency
* Minimize context switching penalty
* Provide some level of vendor agnosticism

* Minimize regression environment overhaul in case of a
vendor change

()

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
We want a common look and feel across the company.

- To increase Verification Engineer efficiency by minimizing context switching penalty
- To provide some level of vendor agnosticism to minimize regression environment overhaul in case of a vendor or tool change

We could achieve some but not all of these by using the vendor solutions out of the box. So we've gone one step further and integrated the vendor regression managers into an internally developed tool called the Verification Management System, or VMS, that provides a standard look-and-feel interface for all users of the vendor tools.

B
Background -
Verification Management System?' (VMS)

*\VVMS provides

» Compilation/Simulation/Regression/Formal App
execution

» Standard method of providing tool arguments

» Basic status logging

* Results generation

A common look-and-feel

[1] David Crutchfield, Thom Ellis (2014). Bringing Regression Systems into the 21st Century. DVCon 2014, San Jose, CA.

()

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
VMS was developed over 10 years ago at Cypress Semiconductor before its acquisition by Infineon. Please read the paper presented by David and Thom at DVCon in 2014 for all the details.

The power of this tool is in the standardization of the regression environment setup.

VMS provides design and test-bench compilation, elaboration, single simulation, full regression, and formal application execution, as well as standard report generation.

VMS is not a replacement for a regression manager but is a complement to one. It further abstracts and standardizes the user environment setup. VMS generates the given regression manager's control and setup files and executes the tools. This abstraction aids in removing the complexity of learning a vendor's custom tool setup (think vManager VSIF or QuestaVRM RMDB writing) by generating or providing these files. It also allows the look-and-feel of the environment setup to stay nearly the same while changing the underlying tools giving us a level of vendor agnosticism. Of course, simulator options will be different but where and how those options are provided remains the same.

The experience we've obtained in developing VMS to use the regression managers and then internally supporting them over the years is the source of the information provided in this paper. The following slides document key aspects of both Siemens EDA QuestaVRM and Cadence vManager.

Regression Manager Control

» Meta-data control files
« Contain hierarchically ordered tasks for the run manager to execute

» Siemens EDA Questa Verification Run Manager (QuestaVRM)
* Run Manager DataBase (RMDB)

« Cadence Verisium Manager (vManager)
* Verification Session Input Format (VSIF)

()

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
Our first topic is regarding the control and customization of the regression manager? For the most part this is accomplished via a vendor specific custom control file that hierarchically describes to the run manager the tasks it should execute.

For Siemens EDA QuestaVRM this is accomplished via the RMDB (Run Manager DataBase) file.

For Cadence vManager this is accomplished via the VSIF (Verification Session Input Format) file.

Regression Control - QuestaVRM RMDB

* Format
« XML with embedded TCL
* More complex than VSIF but more flexible

« Contents
 Hierarchically organized "runnables”
« Conditional runnable execution
« User-defined TCL procs
« Hooks into regression flow

* VMS uses a pre-defined RMDB for all regressions

()

Presenter Notes
Presentation Notes
To start we'll discuss the RMDB file.

The RMDB is written in XML and supports embedded TCL procs which provides dynamic flow control.

Runnables are hierarchically defined, can be conditionally executed, support loops and can execute any script. This allowed us to use a single RMDB to dynamically adapt to any of the VMS supported scenarios including design/TB compilation, optimization, C-code compilation, single simulation or regression execution, report generation, and formal applications

Regression Control - QuestaVRM RMDB

* Challenges
 Size and complexity of RMDB
* Our single RMDB did not scale well
* Performance issues due to single-threaded nature

» Servicing fast completing jobs starved launching of new jobs

 Enhancement request: User control over job management
algorithm

* TCL in XML syntax
* Not ideal for editing or debugging or being generated

()

Presenter Notes
Presentation Notes
The runnables we wrote used the user-defined TCL procedures to read in meta-data files generated by VMS describing the tasks to be executed.

As VMS grew and the flows it supported expanded the size and complexity of the RMDB did not scale.

A future VMS enhancement would be to generate the RMDB file with the exact tasks required for the given regression. This is what we are currently doing with our vManager/VSIF implementation.

Performance: Run manager must balance servicing completed jobs and launching new jobs. Large regressions of short tests have led to bottle-necks. Having control over the weighting of launching vs servicing of jobs would be a good enhancement

Another challenge we've faced is the TCL and XML syntax. While functional, it does not lend itself to easy reading, writing, debugging, or generating.

Also, even though we are able to accomplish what we need within the TCL procs in the RMDB it would be better to write those procedures in a more user-friendly programming language (i.e. Python, Perl, Ruby) and simply call them from the TCL procedures.

S
Regression Control -

Cadence vManager VSIF

e Format
 Generic Nested Text Format

« Syntactically more straight forward and simple than the RMDB
at the cost of less flexibility

» Contents
« Sessions, groups, and test containers with pre/post scripts
* No dynamic flow control

* VMS generates the VSIF for each regression

()

Presenter Notes
Presentation Notes
Now, onto the vManager control. The VSIF file.

Also describes a tree of execution tasks in a syntactically more straightforward format.

Unlike our QuestaVRM implementation which relies on a single RMDB with embedded control, our current vManager implementation generates a unique VSIF for each regression via the VMS tool.

S
Regression Control -

Cadence vManager VSIF

» Challenges
* Assumes leaf node script is executing a simulation

« Compilation can only be done as a pre-session/pre-group script
 Prohibits using the tool features to launch parallel compilation jobs
* We implemented our own compile job manager script

 Enhancement request
* Leaf node flag indicating script is not a test

()

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes

The VSIF syntax assumes that the script executed at a leaf (i.e., test) node is launching a simulation. At first glance this may seem reasonable. However, during our attempts to drive other types of jobs such as compilation scripts (SV and C), report generators, etc., we found this to be a limiting factor. We could place a script to execute these jobs at a leaf node but upon regression completion the test summary results were skewed. Jobs that were not tests were counted as such. Even if we could force the coverage for this “test” to be zero it would still affect the overall test count which leads to confusion when reading reports. We attempted to create groups in the VSIF file that consisted only of pre-group scripts with no “tests” but vManager ignores structures in the VSIF that do not have any leaf nodes, so the scripts were not launched. An enhancement would be to allow VSIF leaf nodes to be somehow tagged as tests which would be included in coverage database merging, results scanning, and metrics gathering. Nodes not tagged as tests would still be executed by vManager but with no built-in assumptions as to their purpose. This would be left to the user.

A similar issue stems from the fact that it is possible in our environment to have multiple compiles per test group. We do not perform a single compilation but launch potentially many compilation scripts to compile various portions of the design and/or testbench independently. This provides control later when only specific portions of the design/tb need re-compiled which is especially helpful in large SoC projects where the long pole of debug turnaround time is re-compilation time. We can lump these compile jobs together in a single pre-group script, but the effect is they are all launched serially not in parallel. We also need to wait for the compiles to finish before launching the elaboration. Therefore, we implemented our own compile job manager script that manages the pre-group compile and elaboration jobs.

Reporting

vrunlog: -
. . vrunlog: **=*= Preparing Simulation Database. This may take a moment. **=
« Regression managers provide | vruntos: |
Ittl f db k . b t h d vrunlog: **==*= Launching Tests ¥ _ _ _
| |n m vrunlog: Test 1 : 5im 1 Pending Sun Oct 30 23:00:43 2022: test tree/intr set test/intr set test RTL 13
eiee ac atc ode vrunlog: Test 2 : Sim 1 Pending Sun Oct 30 23:00:44 2022: test tree/sample irg dsi_ ffee test/sample_irc
(by design) vrunlog: Test 2 : Sim 2 Pending Sun Oct 30 23:00:44 2022: test tree/sample irq dsi ffee test/sample irt
vrunlog: Test 1 : Sim 1 Started Sun Oct 30 23:00:48 2022: test tree/intr_set_test/intr_set test RTL 13f
vrunlog: Test 2 : Sim 1 Started Sun Oct 30 23:00:51 2022: test tree/sample irg dsi ffee test/sample ire
vrunlog: Test 1 : Sim 1 Finished Sun Oct 30 23:00:58 2022: test tree/intr_set_test/intr_set test RTL 13f
vrunlog: Status: Passed
¢ Used QueStaVRM user TCL vrunlog: Test 2 : Sim 2 Started Sun Oct 30 23:00:59 2022: test tree/sample irg dsi ffee test/sample irg
. . vrunlog: Test 1 : S5im 1 Merge Started Sun Oct 208 23:81:32 2022: test tree/intr set test/intr set test f
hOOkS tO pr0V|de generIC vrunlog: Test 1 : Sim 1 Merge Complete Sun OcCt 3@ 23:01:35 2822: test tree/intr set test/intr set test f
vrunlog: Test 2 : S5im 1 Finished Sun Oct 38 23:03:05 2022: test tree/sample irq dsi ffee test/sample irc
Status vrunlog: Status: Passed
vrunlog: Test 2 : Sim 2 Finished Sun Oct 30 23:03:11 2022: test tree/sample irq dsi ffee test/sample ir
vrunlog: Status: Passed
vrunlog: Test 2 : Sim 1 Merge Started Sun Oct 38 23:03:44 2022: test tree/sample irg dsi ffee test/samy
° 1 vrunlog: Test 2 : Sim 1 Merge Complete Sun Oct 38 23:03:47 2022: test tree/sample irg dsi ffee test/samj
Used central logging server irnios:
Wlth VManager Summary Test Results Are:
. . . Tests Passing: 3 100 . 6e%
implementation to achieve Tests Warning: 6 0.00%
. Tests Failing: 8 0.08%
similar results Unknown i@ 0.00%
Tests Other : 8 0. 068%
. Total Tests : 3 180.80% Complete
« vManager API too expensive : @ 0.00% Not Complete
(I|Cense and tlme) Coverage on this regression run: 66.98%

CONFEREMNCE

accellera) - A | -

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
Both Questa VRM and Cadence vManager provide little feedback natively when run in batch mode. This is by design as traditionally large regressions are run nightly in batch mode and little user interaction is required. Therefore, we implemented our own reporting mechanisms to provide a happy medium to provide the user enough feedback during the batch regression to understand

With VRM we were able to accomplish customized reporting by adding our messaging to the VRM user-defined procedure (e.g. ActionStarted, ActionCompleted) where desired. Using the VRM API we determine which script was just started/completed and generate a message, if useful, to the user. These user-definable procedures are very powerful and are what enable us to fully customize our VRM implementation. They allow us to only report on actions the user may find interesting such as compilation or simulation job status and filter out noisy notifications about pre or post scripts performing environment setup that we really only want to have status for if there is a failure.

vManager does not provide user-definable hooks to the level of granularity that VRM does. It does provide pre/post hooks for each session/group/test level but there is no central location where the information regarding what is currently being executed is provided. Our solution was to create a reporting server which was launched by VMS in parallel to the vManager session. All tool wrappers launched via our generated VSIF communicate to the central reporting server to report their status such as “compile/elab/simulation started”, “simulation passed/failed”, etc.

An alternative solution we also investigated was making use of the vManager API (vAPI) to periodically “pull” status information from the session as it ran. However, we found we could not extract test-specific information from the session database without potentially pulling a high-availability license. Even though the license would only be pulled for a short time there could potentially be tens-of-thousands of simulations running concurrently in our environment leading to license shortages.

Output Control

* Where are my results?

* Run managers force a non-intuitive output directory naming
convention

« Sample QuestaVRM default output directory structure

<VRMDATA>/sim/run tests~1l/ts comp/seeds~1l/simulate
« Sample vManager default output directory structure

<VMGR regr>/chain 0/<mode>/groupl subgroupl/run [1..]

Changing the output directory structure not natively possible
with either run manager!

()

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
Our experience is that users want to move around their tests’ result folders in a terminal. The run managers (both VRM and vManager) force a non-intuitive naming convention on the output directory names.

As can be seen here the test folder names do not correspond to the names of the tests executed making manually maneuvering around the output folder structure difficult. This is not as much an issue when using the GUI as it performs this mapping for you. However, there are many times when a user may want to run a script or simple linux commands in their output folder structure to find certain test results.

.

Output Control

tests

= VMS Input Test Tree VMS Output Test Tree

~—-
| subgroup1 | | subgroup? |

| subgroup1 I | subgroup2 I _@
~ - ~—-- —
_
== Hoe —
I
/
=__ =
Force the output folder structure to match the T
- =

input folder structure

()

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
A major issue we had with this limitation is due to a feature of VMS which is the ability for a user to define a “test tree” which is a hierarchical directory structure that describes the configurations for tests in a regression. Branches in the test tree represent different groupings of tests and nodes in the tree represent one or more tests. It is also possible to have groups within groups.

Our requirements was for VMS to produce test results in a matching directory structure as show. This makes it easier for a user to find tests in the output directory structure. Creating this exact output directory structure natively through VRM or vManager controls was not inherently possible.

For the test results folder name VRM does now support a mechanism to name the folder with the actual test name. When VMS was originally implemented this function did not exist. While helpful, we still need to override the full output folder structure to exactly produce the output we desire.

In the case of vManager, the test results folders are simply named run_X where X is an incrementing integer. There is no mechanism in vManager to change this behavior.

The output directory structure shown here reflects the effect of running multiple seeds of certain tests. For example, the group1/subgroup1/test1 test was run with two seeds. Therefore, the output structure contains two folders under the group1/subgroup1/test1 folder. The test results folder names are appended with the seed. This allows a user to navigate around the output test folder structure in a terminal and know, without opening any log files, which test was run in which folder.

We override the default directory naming by building our own shadow test results tree. The wrappers we place around each command we execute in our VSIF and the Runnables in the RMDB first create and then change directory to the custom folder representing that test before executing.

This is working but has exposed some issues with automatic re-running of failed tests with vManager.

Centralized Server

* Pros
« Collaborative benefits to using a central server
* More easily track/view regression results between users

« Cons
« Server cost (setup and maintenance/support)
* Proprietary database access may require a license
« Slow API access to DB

 Enhancement Request:

» Generating results locally and uploading to server post-regression would be
an appreciated mode of operation

accellery -

SYSTEMS INITIATIVE

Presenter Notes
Presentation Notes
One major difference between the two run managers is that VRM runs as a stand-alone process per regression, where-as vManager is setup as a central server servicing multiple projects and regressions per project concurrently. There are collaborative benefits to be had by using a central server across users and projects. Regression tracking data can be visualized more easily when multiple users have visibility into each other’s regressions. However, there is a cost to this setup in both hardware (servers at each site), maintenance via an admin needing to continually setup and configure new projects, and licenses. A better approach in our minds would be to run the regressions as stand-alone processes while still providing a central server that can be used for logging of regressions as needed.

The central server setup also makes it more difficult to extract regression data from the session as it is stored inside a proprietary database requiring, in some cases, a license to access. There is no such restriction when using the VRM implementation. All data stored in the UCDB files is readily accessible with no licensing restrictions.

Finally, when a vManager project is setup on the server a specific version of Xcelium is targeted. If a user wishes to call the Xcelium command directly from their VSIF file, they are restricted to this version of Xcelium. Changing versions to test out a new feature or bug fix requires a server-admin to update the project affecting all users of that project which is not ideal. To work-around this restriction we do not call Xcelium directly but instead call a wrapper script which sets the Xcelium version to the version defined in our environment. There are potential compatibility issues if the Xcelium and vManager versions do not match. The same applies to VRM and QuestaSim. However, we prefer to manage those risks ourselves.

Conclusion

* Success!

* Both regression managers have been integrated
into our environment

» Excellent cooperation with both vendors over the
years

()

Presenter Notes
Presentation Notes

To wrap up I'd like to point out again how we at Infineon have been successful in making extensive use of both these Vendor's tools.

VMS was the main digital functional verification entry point for most users at Cypress Semiconductor before the acquisition by Infineon Technologies.

We are now actively rolling it out to a very large potential user base within Infineon as well. Due to the large-scale adoption of VMS it is important to critically evaluate any tools it makes use of. During our evaluations and implementations of these tools over the years we have had excellent cooperation with both Siemens EDA and Cadence Design Systems. Their help and expertise have been greatly appreciated!

Questions?

accellery -

	What I Wish My Regression Run Manager’s Vendor Knew!
	Agenda
	Background
	Background - �Verification Management System1 (VMS)
	Regression Manager Control
	Regression Control - QuestaVRM RMDB
	Regression Control - QuestaVRM RMDB
	Regression Control - �Cadence vManager VSIF
	Regression Control - �Cadence vManager VSIF
	Reporting
	Output Control
	Output Control
	Centralized Server
	Conclusion
	Questions?

