

data

[127:0]

clk_i

rst_n_i

nc_start_

ECC Encode

clk_i

a ff

rst_n_i

data_i[127:0]

cw_o[152:0]

cw_i[152:0]

data_o[127:0]

err 4

Pragmatic Formal Verification of Sequential Error Detection and Correction Codes (ECCs) used in Safety-Critical Design

Aman Kumar

no_er err_1 err_2 err_3 err_3 err_4 data_c

[127:0]

ecc_o [24:0]

ECC Decode

ff

Infineon Technologies, Dresden, Germany

INTRODUCTION

- Error Detection and Correction Codes (ECC) are often used in digital designs to protect data integrity
- Soft errors in memories can occur due to radiation errors, electrical glitches or magnetic interferences
- An ECC of 128 data bits with a possibility to detect up to four-bit errors, the combination of bit errors is given by 128C1 + 128C2 + 128C3 + 128C4 ≈ 1.1 * 10^7
- To overcome such problems and sign-off the design with confidence within reasonable proof time, we present a pragmatic formal verification approach of complex ECC cores with several complexity reduction techniques and know-how that were learnt during the course of verification

SEQUENTIAL ECC VERSION

Introduce bit errors using precondition

in property

cw_i

97f

97f

Sequentially pipelined encoding and decoding stages

LINEARITY APPROACH

- Syndrome generator is a linear function
- syn o is independent od data i

REDUCED LATENCY MODEL

- Encoder has longer latency
- A cycle inaccurate model of the Encoder was prepared that calculates ECC in same clock cycle

INDUCTION-BASED PROOF

- Induction is a method to check if the design is in a random good state whether it will be in a good state at the next cycle
- SST trace from JasperGold gives hints for helper assertion to converge the target property faster

INDUCTION-BASED PROOF

• SST trace shows two missing constraints

clk_i		
rst_n_i		
cw_i[127:0]	97f	
dec_state	SBC DBC	IDLE
Single bit error co	IDLE state	

clk_i	Ĺ	ŗ	L	Π	Ļ		ŗ	L	Γ	L	Γ	Ц	Π	
rst_n_i		5			-		1							
data_i[127:0]		20	ff	X										
cw_o[152:0]											8	97f	X	
enc_start_i		5	•	L			1							
dec_start_i		-	_	\geq	Ż		į.				_	_		
							1							
	De	codi	ing	sta	arts I	befo	re	enc	odi	ng	is	finis	he	d

• Adding these two missing constraints helped to prove the properties within 24 hours

