
 

 

Guardians of the Chip: Mastering Next-Gen 

Security for SoCs and IPs 

Jagata Sridevi, sridevi@cadence.com , Cadence Design Systems, India 

Vishnu Prasad K V, vishnuv@cadence.com , Cadence Design Systems, India 

Deep Mehta, deep@cadence.com , Cadence Design Systems, India 

Abstract- In the era of high-speed data protocols driving next-generation system-on-chips (SoCs) and intellectual 

properties (IPs), ensuring robust security has become critical. This paper focuses on PCI Express (PCIe) and Compute 

Express Link (CXL) protocols, both pivotal in high-performance environments such as data centers, AI-driven systems, 

and cloud computing. This paper explores the Layered IDE Packet Security Framework for PCIe/CXL. The main intent 

of this paper is to categorize key verification blind spots—ranging from error detection and state transitions to resource 

management and protocol-specific handling. By applying a suite of targeted verification techniques, including State 

Machines, Operation Codes, White Box Logging, Modular Debug Hooks, and Flexible Verification Methods, we achieve a 

comprehensive ~97% coverage in protocol verification. Our findings underscore the importance of rigorous security 

verification to mitigate risks, enhance data integrity, and ensure reliable performance in complex, high-speed systems. This 

research provides a practical framework for addressing emerging security challenges in SoCs and IPs, paving the way for 

secure and efficient system designs. 
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I.   INTRODUCTION 

In the pursuit of secure, high-performance system-on-chips (SoCs) and intellectual properties (IPs), understanding 

the underlying protocols and their security mechanisms is essential. This section provides an overview of key 

protocols—PCI Express (PCIe), Compute Express Link (CXL), Ethernet (MACsec), MIPI, Thunderbolt, HDMI, and 

DisplayPort—highlighting their roles in enabling high-speed data transfer across applications from data centers to 

embedded systems. While each protocol integrates specific security frameworks, they also present unique 

vulnerabilities that, without rigorous verification, may go undetected and lead to security breaches. In these protocols, 

Advanced Encryption Standard (AES) algorithms, along with robust key management techniques, form the backbone 

of their security frameworks. 

A. PCI Express (PCIe):  

PCIe is a high-speed interface connecting GPUs and SSDs, crucial in data centers and AI. It uses the IDE framework 

with AES-GCM encryption and MACs to secure data against unauthorized access. 

B. Compute Express Link (CXL):  

CXL facilitates data sharing between processors and accelerators for cloud and AI applications. It relies on IDE 

protections to maintain data integrity in complex memory-sharing scenarios, requiring multi-layered security 

measures. 

This overview highlights each protocol's functionality and security approach, emphasizing the need to address blind 

spots that could compromise system integrity in high-performance environments. 

 
TABLE I 

WIDELY USED PROTOCOLS AND ITS SECURITY FRAMEWORKS 

Protocol Security framework Authentication Mechanisms 
PCIe and CXL Integrity and Data Encryption AES-GCM and MAC 

Ethernet Media Access Control Security (MACsec) AES-GCM -128, 192, 256 bit 

MIPI CMAC and GMAC MAC Algorithms 

HDMI High Band width Digital Content Protection (HDCP) Copy Protection Scheme 

 

As high-stakes applications like autonomous vehicles, data centers, and AI-driven systems rely on rapid data 

exchanges, secure and resilient protocols are essential to prevent catastrophic failures and breaches. This is especially 

critical in high-performance environments such as data centers and AI computing, where protocols like PCIe and CXL 

enable high-speed communication between processors, memory, and accelerators. 

 



 

 

II. MOTIVATION: APPLICATION EXAMPLE 
C. GPS Data Integrity in Cloud-Based Autonomous Vehicle Fleets 

In a cloud-based data center supporting autonomous vehicle operations, high-speed data transfer between processors 

and memory modules is vital for processing real-time GPS coordinates and sensor data. However, without robust 

security measures, these high-speed channels introduce vulnerabilities that attackers could exploit to compromise data 

integrity. For example, an attacker could intercept, manipulate, or inject GPS data, leading to potential risks in vehicle 

navigation and fleet management." 

For instance, an attacker could use an interposer—a hardware device inserted between PCIe or CXL communication 

paths—to intercept and manipulate GPS data as it flows through the data center. With an interposer in place, the 

attacker could: 

1) Intercept and Monitor GPS Data: By capturing real-time GPS coordinates, the attacker gains unauthorized 

access to vehicle locations, violating data privacy and exposing sensitive positional information. 

2) Spoof or Manipulate GPS Signals: The interposer could modify GPS data in real time, misguiding vehicles 

to unintended or unsafe routes. This misrouting not only jeopardizes passenger safety but also risks traffic 

disruptions and costly mismanagement of the autonomous fleet. 

3) Inject False Data: By injecting falsified GPS or sensor signals, an attacker could misdirect multiple vehicles 

simultaneously, resulting in cascading navigation errors across the fleet. 

This scenario underscores the necessity of implementing secure, encrypted data transfer across PCIe and CXL 

protocols, emphasizing the role of end-to-end security measures and verification to prevent hardware-based threats 

like interposer attacks. 

 

Figure 1. GPS spoofing attack in vehicle. 

 
III. BACKGROUND AND LITERATURE REVIEW 

Integrity & Data Encryption (IDE) is a security framework for PCIe and CXL, providing confidentiality, integrity, 

and replay protection for Transaction Layer Packets (TLPs). IDE supports multiple use models and ensures 

interoperability, utilizing cryptographic mechanisms aligned with industry best practices to adapt to evolving security 

requirements. 

IDE mitigates threats from physical attacks on PCIe/CXL links, such as attempts to access, modify, reorder, or 

delete confidential data using specialized equipment or malicious devices. It secures data as they traverse switches, 

safeguarding against risks from compromised or reprogrammed switches. The framework also supports secure traffic 

management within trusted execution environments. 



 

 

.  
Figure 2. Functionality of IDE. 

The above diagram illustrates the security framework for PCIe/CXL, highlighting authentication, IDE, and 

encryption mechanisms to secure data across vulnerable physical links. Certificate Management and Authentication 

(CMA) and Security Protocol and Data Model (SPDM) are used to authenticate connected devices, ensuring only 

trusted devices exchange data. IDE includes Key Management (KM) and AES-GCM encryption. AES-GCM provides 

data confidentiality and integrity by securing data packets, while the KM protocol handles encryption key generation, 

distribution, and refreshment. 

D. Overview of PCIe IDE:  

PCIe IDE establishes two types of streams between ports: Selective IDE Streams, which apply to specific TLPs 

based on defined association rules, and Link IDE Streams, which encompass all TLPs transmitted using a particular 

traffic class, excluding those under a Selective IDE Streams. This dual-stream configuration enables tailored security 

policies for different types of traffic. 

The PCIe IDE framework includes interoperable mechanisms for stream establishment and key management, 

leveraging industry specifications. It emphasizes a structured approach to trust establishment and key exchange, 

ensuring that security measures are robust and flexible enough to adapt to evolving threats while maintaining 

compatibility across various system components. 

E. Overview of CXL IDE 

CXL IDE safeguards data traffic within the CXL architecture, ensuring that sensitive information remains 

confidential and tamper-proof while in transit. This is particularly important for high-performance environments such 

as cloud computing, memories and autonomous vehicles. 

The specification details distinct security protocols for different types of traffic. CXL.io IDE adapts principles from 

PCIe IDE while accounting for protocol-specific constraints, ensuring seamless performance. Meanwhile, 

CXL.cachemem IDE secures CXL.cache and CXL.mem traffic, covering encryption, integrity checks, and unique 

handling of control flits to maintain data security without compromising protocol efficiency. 

 
Figure 3. IDE Secures TLPs Between Ports for PCIe and CXL Protocols 

 



 

 

IV. IMPLEMENTATION AND RELATED WORK  

F. Layered IDE Packet Security Framework for PCIe/CXL: Techniques and Strategies: 
Our multilayered verification strategy for IDE, as depicted in the flowcharts, is designed to ensure robust security 

from initialization through to transmission and reception, protecting against unauthorized access, data alteration, and 

malicious replays. 

1) IDE Encryption: 

The process starts with IDE Settings configuration, where foundational security parameters are set, laying the 

groundwork for secure communication. Following this, the Stream Configuration step prepares the data pathways, 

determining the conditions under which secure data exchange will occur. Key Management then initiates, where keys 

for encryption and decryption are established, periodically refreshed, and securely distributed, ensuring that even long-

running systems maintain cryptographic robustness. Encryption is achieved through AES-GCM (Advanced 

Encryption Standard in Galois Counter Mode), providing both confidentiality and integrity for each packet. 

Once these initial configurations are complete, Secure Stream Enablement is activated, transforming the Trusted 

Execution Environment (TEE) into a secure state. Only after this point does Traffic Transfer begin, with each data 

packet traveling through a controlled and secure stream, ensuring its integrity and confidentiality are upheld. 

 
Figure 4. IDE Encryption Flow 

2) IDE Decryption: 

On the receiving end, Traffic Reception initiates the multi-layer verification of the incoming data. The data is first 

decrypted if it is an IDE packet, transforming it back into readable information while verifying its confidentiality. 

Next, the Check for Stream ensures that the data packet belongs to a recognized and authenticated stream, preventing 

any unauthorized streams from contaminating the secure environment. 

Once stream validation passes, the Check for MAC (Message Authentication Code) verifies the data’s integrity, 

confirming that it has not been tampered with during transmission. The subsequent Check for PCRC (Packet Cyclic 

Redundancy Check) layer further validates packet integrity, detecting any errors or corruption that may have 

occurred. 

If any verification stage fails (e.g., incorrect stream, MAC mismatch, PCRC error), the protocol triggers error-

handling mechanisms. Any untrusted or misrouted packets, failed IDE checks, or detected errors cause an Insecure 

State transition, halting the transfer and isolating the compromised data. The secure link can only be restored after a 

reset, ensuring that no insecure data persists in the system. 

This multilayered IDE verification strategy essentially combines proactive and reactive security measures to create 

a flexible, high-assurance environment. By structuring security checks at each level—from initialization through to 

error handling—it builds redundancy into the system’s defenses, fortifying the protocol against a spectrum of potential 

threats. The layered approach is robust enough to catch protocol-specific vulnerabilities yet versatile, balancing 

security and performance with mode-specific adaptations. 

This approach also underscores a "zero-trust" principle, where every packet undergoes rigorous validation at 

multiple checkpoints, ensuring that each layer adds a unique safeguard. This structure, shown in the flow charts, 

reflects a multi-dimensional defense strategy that extends beyond traditional IDE verification and positions the 

protocol to withstand emerging threats in high-speed, data-intensive environments. 



 

 

 
Figure 5. IDE Decryption Flow 

 
Building upon the implemented framework, several specialized techniques were developed to address the unique 

challenges encountered in the verification process. The following sections describe each technique in detail, 

illustrating how they address specific verification needs and contribute to the overall effectiveness of the system. 

 

Technique 1: State Machine for IDE Capability Discovery 

The State Machine for IDE Capability Discovery is a streamlined technique that simplifies managing IDE capability 

discovery, particularly in complex configurations like link and selective streams. By organizing each step of the 

discovery process into distinct states, such as IDE_BEGIN, IDE_LINK_STR, and IDE_SEL_ADDR, this approach 

provides clear transitions and enables precise tracking of each phase. This structure enhances alignment within 

verification teams, offering a predictable framework that aligns with the IDE specification and improves overall 

verification accuracy. 

The implementation involves defining specific states and transitions that map directly to IDE discovery 

requirements. The FSM is integrated into the testbench, automating the process by handling IDE checks and 

transitioning through states as defined by the specification, ensuring the discovery process follows the correct flow. 

In practice, this FSM approach serves as a roadmap for verification engineers, offering a structured path to monitor 

IDE discovery. It improves team communication by providing a common framework and enables consistent and 

repeatable verification of IDE capabilities, especially in complex scenarios, ensuring compliance with IDE standards. 

 
Figure 6. FSM for IDE Capability Discovery 

Technique 2: Operation Codes in IDE Context:  

In the complex environment of IDE protocol verification, managing numerous unique operations can lead to 

inefficiencies, especially when each operation requires a dedicated API. To streamline this process, an opcode-based 

system offers a unified solution. Each operation is assigned a unique operation code (opcode), prefixed for easy 

recognition (e.g., PCIE_IDE_OPCODE_), allowing a single API to handle multiple functions efficiently. This 

approach enhances code readability, promotes consistency, and eliminates the need for fragmented APIs.   

The unified API framework is built to recognize various IDE operations by their assigned opcodes. Instead of 

separate APIs, each function—such as SetLnksStrCtrl, EnableCmEnc, or GotoInsecure—is mapped to a unique 

opcode. This single API structure manages all operations, with the prefixed opcodes ensuring easy identification and 

invocation of specific functions. This setup simplifies the API's structure and supports future expansion by allowing 



 

 

additional operations to be added without restructuring. Each opcode corresponds to a distinct operation, enabling 

streamlined testing and debugging. 

 
Figure 7. Operation Codes and Its Implementation Results 

Technique 3: White Box Logging for Transparent Debugging: 
White Box Logging provides a detailed view of each step within complex operations, particularly in high-security 

or performance-sensitive systems. Unlike black box logging, which only captures inputs and outputs, white box 

logging reveals internal parameters, transformations, and results, making it easier to trace issues and validate 

functionality. 

White box logging is integrated into operations, such as cipher processes, to capture and display intermediate steps 

in a structured format. Logged Data contains Key parameters like StreamID, KeyID, and specific data points such as 

KeySet, Initialization Vector (IV), and AAD Length are recorded. This detail allows engineers to validate each 

component and transformation in real-time. Final Output Logging concludes with the processed output data, providing 

a full view of the input-output relationship and confirming the integrity of the operation. 

White box logging enables quick issue tracing in security-critical operations, thorough validation of data integrity, 

and reliable tracking in high-stakes applications, ensuring immediate detection and correction of deviations. 

Additionally, white box logging can be combined with protocol checks to further enhance error detection. Protocol 

checks ensure that all operations comply with defined standards and specifications. 

 
Figure 8. White box Logging and its Significance 

Technique 4: Modular Debug Hooks for Layered Architectures: 

This technique introduces modular debug hooks within the PCIe/CXL architecture to enhance transparency and 

traceability in complex, layered environments. It uses structured callbacks for both the IDE and DOE layers, providing 

verification engineers with precise control over specific points in the data flow, which is crucial for efficient 

debugging.  

IDE Layer Callbacks: Callbacks are implemented to track transaction flow in transmit (TX) and receive (RX) 

directions, enabling monitoring of entry and exit points in transaction queues.  

DOE Callbacks: Additional callbacks trace the start and end points of request and response transactions in the DOE 

layer, helping to pinpoint specific stages within the data flow.  

This targeted approach enables precise monitoring of transaction flow, faster issue identification, and efficient 

protocol validation with minimal overhead. For Example 

 

Precise Monitoring includes that the TX queue entry callback captures when the problematic transaction is queued, 

logging all relevant details (e.g., encryption key ID, TLP type, and length). If the transaction exits the TX queue 

without issues, the callback verifies that encryption and processing were successful. Efficient Debug involves 

correlating logs from the IDE and DOE callbacks, engineers identify that the issue occurs when TLPs with a specific 

Stream ID are incorrectly handled at the DOE layer. This pinpointing avoids manual inspection of unrelated layers, 

reducing debug time. Finally by Manually introducing error scenarios, such as injecting corrupted TLPs, mismatched 

encryption keys, or invalid routing IDs, provides additional insights into the system's fault tolerance. By combining 



 

 

modular debug hooks with targeted error injections, engineers can simulate and validate the system's responses to 

various fault conditions, ensuring robustness and compliance with the protocol specifications. 

 
Figure 9. Callback Hooks for IDE Functionality 

Technique 5: Flexible Verification Methods for IDE Functionality 

This technique provides flexible approaches to verify IDE functionality, especially when the Device Under Test 

(DUT) lacks native support for authentication and key management. By bypassing certain prerequisites, these methods 

enable comprehensive verification under constrained conditions. 

Approach 1: Authentication Bypass 

 The first approach bypasses the authentication process, allowing verification to proceed even when the DUT 

is not fully equipped for authentication. Here, the VIP automatically initiates a "front-door" authentication process 

using an opcode, enabling the VIP to manage the entire authentication flow independently. This approach is 

particularly beneficial when authentication is either not ready in the DUT or managed by firmware or the operating 

system, providing a seamless workaround for testing purposes. 

Approach 2: Backdoor Key Management Solution 

 The second approach introduces a backdoor method to bypass the standard Key Management protocol. 

Instead of following the conventional KM process, this method directly sets the IDE key, allowing verification to 

proceed without requiring full KM support from the DUT. This backdoor approach is useful when KM processes are 

unavailable or handled externally. 

 
Figure 10: Opcode to Bypass Authentication and Key Management Mechanisms 

By adapting these five IDE techniques, verification engineers can address diverse security needs across IPs and 

SoCs. These techniques enhance flexibility, modularity, and traceability, providing a robust toolkit for verifying 

security protocols in various high-stakes applications, ultimately strengthening security resilience in SoC designs. 
V. CHALLENGES AND VULNERABILITIES 

G. Verification Blind Spots in IDE Protocols: 

In the process of verifying high-speed protocols like PCIe and CXL, several challenges—referred to here as blind 

spots—can arise, posing risks to data integrity, security, and performance. These blind spots can complicate 

verification efforts, especially when dealing with complex configurations and stringent security requirements.  

For clarity and focus, we have categorized these blind spots into five key areas: Error Detection and Classification 

Challenges, State and Configuration Transitions, Field-Specific Error Injection, Resource Management, and Protocol-

Specific Handling and Precedence Rules.  

The following sections outline each category of blind spots, provide practical examples, and link them to specific 

techniques that enhance the robustness and efficiency of the verification process. 

1) Error Detection and Classification Challenges 

a) Behavior on Invalid Routing ID Corruption 

Description:  

 The specification may not clearly define how the RX side handles invalid routing IDs, leading to 

potential ambiguity in expected behavior. Undefined RX handling can result in unhandled exceptions or 

security risks. For Example, If an invalid routing ID is introduced during data transfer, the RX side may 

encounter unexpected behavior like should it be discarded or consumed. Testing should confirm that RX 

handling is secure and consistent. 

Mitigation Strategy:  

 Introduce test cases that inject invalid routing IDs to verify secure operation. 



 

 

b) Plaintext CRC Testing 

Description: 

 Unlike CXL.io/PCIe IDE, PCRC (Plaintext CRC) is not transmitted over the link for 

CXL.cachemem. Verifying this optional feature requires ensuring that encryption and decryption handle 

PCRC inclusion and exclusion accurately. 

MitigationStrategy: 

 Include random settings for PCRC in test vectors. Verify the encryption and decryption processes 

under different scenarios to ensure the correctness of the Plaintext CRC feature, even when it’s optional. 

2)  State and Configuration Transitions 

c) Handling Pending Packets During Secure-to-Insecure Transition 

Description:  

 Transitioning from secure to insecure states poses risks, particularly with pending TLPs and non-

IDE TLPs. Pending packets during such transitions can lead to misrouted errors if not properly managed, 

while non-IDE TLPs processed in secure mode could compromise security. For instance, a secure-to-insecure 

state change might inadvertently allow non-compliant TLPs or misroute pending packets. 

Mitigation Strategy:  

 Verification should ensure that pending TLPs are cleared from queues before state transitions. 

Additionally, tests must confirm that only IDE-compliant TLPs are processed in secure states, with non-IDE 

TLPs being securely discarded. 

d) Credit Management in Error Scenarios 

Description:  

 Incorrect handling of credits during error scenarios can result in mismatched credits, causing 

protocol deadlocks. Credit mismatches can affect communication, leading to performance issues. For 

example, An IDE error may discard packets without consuming credits, leading to communication stalls. 

Verification should confirm credits are correctly managed in error conditions. 

Mitigation Strategy:  

 Track credit usage to ensure they are consumed correctly before discarding packets. 

3) Field-Specific Error Injection 

e) Precision and Accuracy in Error Injection and Classification 

Description: 

 Injecting specific errors like PCRC or MAC corruption must be precise to prevent unintended effects 

on adjacent fields, which could complicate error analysis. Moreover, overlapping errors such as Misrouted 

TLP and IDE Check failures require careful classification to avoid misdiagnosis. For example, improper 

injection may corrupt multiple fields, triggering incorrect error classifications and complicating fault 

isolation. 
Mitigation Strategy: 

 Use fine-grained error injection techniques while ensuring that error detection and classification 

mechanisms are robust enough to distinguish between closely related errors. 
4) Resource Management 

f) RID Management with Limited Functionality 

Description:  

 Limiting Routing ID (RID) management may lead to conflicts in selective stream IDE setups. RID 

conflicts can affect system performance and protocol integrity. For Example, With only one RID range 

available for selective stream IDE, address mapping conflicts could arise, affecting data flow. Verification 

should test for RID conflicts. 

Mitigation Strategy:  

 Simulate limited functionality scenarios to test for address mapping conflicts. 

g) Efficient Management of Association Address Registers 

Description: 

 The Selective IDE Stream Register Block can repeat up to 255 times, with each block containing 

IDE Address Association Registers that can also repeat independently. Without a structured method for 

addressing these blocks, maintaining consistent access and ensuring correct register configuration becomes 

difficult, especially when handling multiple streams  
Mitigation Strategy: 

 By assigning offsets to these tasks, each task can directly target a particular register block, allowing 

precise control over the IDE Address Association Register within each Selective IDE Stream Register Block. 



 

 

5) Protocol-Specific Handling and Precedence Rules 

h) Handling Precedence in Selective and Link IDE Streams 

Description: 

 Verifying precedence rules between Selective and Link IDE Streams can be challenging due to 

ambiguities. Misinterpretation of precedence rules may lead to misrouted packets. For example, When both 

stream types are active, TLPs may be misrouted if precedence is unclear. Testing should confirm priority is 

followed. 

Mitigation Strategy:  

 Develop scenarios to validate priority handling between Selective and Link IDE Streams. 

i) Overflow and Underflow Handling in Counters 

Description:  

 According to the specification, implementing overflow at the receiver’s DUT end is impractical, as 

sending more than 2^{1024} TLPs to test overflow is unfeasible. However, underflow conditions are possible 

as per spec guidelines. To address this limitation, both the Device and VIP should maintain independent Rx 

and Sent counters on each side.  

Mitigation Strategy: 

 The specification does not explicitly outline requirements for these counters but having them 

separately is essential to monitor and manage potential overflow and underflow scenarios accurately. 

 
H. Addressing Blind Spots with Targeted Techniques 

Each of these categories represents a distinct type of verification challenge. However, with the implementation of 

our proposed techniques—such as State Machines, Operation Codes, White Box Logging, Modular Debug Hooks, 

and Flexible Verification Methods—verification engineers can effectively address and resolve these critical scenarios. 

 
TABLE II 

WIDELY USED PROTOCOLS AND ITS SECURITY FRAMEWORKS 

Technique 
 

Blind Spots Addressed Description and Mitigation Role 

State Machine for IDE Capability Discovery State and Configuration Transitions (Blind 

Spots c, d) 

The State Machine approach manages 

complex state transitions, ensuring 

consistency across devices. It helps prevent 

miscommunication and protocol errors 

during state changes. 

Operation Codes for Unified Security 
Operations 

Field-Specific Error Injection (Blind Spot e) Operation Codes streamline API 
management, allowing precise control over 

security functions. This modular approach 

ensures targeted error injections without 
unintended side effects. 

White Box Logging for Transparent 

Debugging 

Error Detection and Classification 

Challenges (Blind Spots a, b) 

White Box Logging provides detailed 

visibility into internal processing steps, 
aiding in accurate error classification and 

minimizing ambiguity in error detection and 

debugging. 

Modular Debug Hooks for Layered 
Architectures 

Resource Management (Blind Spots f, g) Modular Debug Hooks allow selective 
monitoring of specific stages, enhancing 

control over resources like RIDs and 

association registers, which optimizes 
performance and efficiency. 

Flexible Verification Methods for IDE 

Functionality 

Protocol-Specific Handling and Precedence 

Rules (Blind Spots h, i) 

Flexible methods allow for testing in 

scenarios where full security support may be 
lacking. This approach helps verify 

consistent handling of non-IDE TLPs and 

counter behavior. 

 
VI. RESULTS AND CONCLUSION 

In this study, we systematically addressed critical verification blind spots within the IDE protocols by applying 

targeted techniques, each selected to tackle specific challenges identified during the verification process. Our methods 

encompassed managing complex state transitions, injecting precise field-specific errors, ensuring transparent 

debugging, optimizing resource management, and handling protocol-specific precedence rules. By implementing these 

techniques, we were able to achieve significant improvements in both the robustness and accuracy of IDE protocol 

verification. Few Bugs that were found: 



 

 

Bug 1: Protocol Flit Transmission Between MAC Epochs 

 An issue was identified where protocol flits from the next MAC Epoch were transmitted before the TMAC 

flit, contrary to the specification. This misalignment between MAC Epochs can lead to encryption inconsistencies 

and compromise data integrity, posing significant security risks. 

Bug 2: Mixing IDE and Non-IDE TLPs in the Same Flit 

 The handling of Selective Streams revealed challenges in detecting and managing mixed IDE and Non-IDE 

TLPs within the same flit. Although permitted by the specification, improper differentiation can compromise 

encryption integrity, cause key mismatches, and introduce security vulnerabilities, highlighting the need for 

enhanced validation mechanisms. 

Bug 3: Re-Configuration of Selective Stream's Address Association Block Register 

 The Address Association Block Register was found to be non-reconfigurable after initial programming, 

limiting its adaptability for dynamic traffic allocation or error recovery. This restriction poses challenges in runtime 

flexibility and efficient resource utilization. 
Our approach yielded a notable ~97% coverage in IDE verification, as shown in the ML-driven coverage regression 

snippet. This coverage level signifies a high degree of confidence in the protocol's security and integrity, confirming 

that critical blind spots have been effectively mitigated. 

 
Figure 11. Coverage Results of PCIe IDE Regression  

Ultimately, our methodology provides a practical and high-confidence verification framework that reduces manual 

intervention, improves debugging efficiency, and ensures that IDE protocol implementations meet stringent security 

and reliability standards. This outcome is vital for high-performance applications, such as data centers and AI-driven 

systems, where robust data integrity and security are paramount. These findings and methodologies, while 

demonstrated with Cadence Verification IP, extend beyond the realm of IP verification. 

Additionally, while this work primarily focuses on PCIe and CXL, the proposed IDE techniques have the potential 

to be extended to other high-speed protocols like HDMI and MIPI, though each may present unique challenges in 

terms of encryption and data integrity specific to their operational environments.  

Future IDE projects could benefit from implementing protocol-agnostic verification frameworks, designed to 

validate IDE mechanisms across multiple high-speed protocols like PCIe, CXL, and emerging standards. This 

approach would ensure that security verification processes are adaptable and reusable, reducing the time and effort 

needed for each new protocol. Additionally, introducing adaptive error recovery mechanisms within IDE protocols 

could enhance system resilience. For instance, dynamically rerouting secure data streams during IDE failures or 

encrypting fallback channels in real-time could mitigate the risks of partial protocol failures. Another innovative 

approach is real-time IDE stress testing, which integrates workload simulation with live traffic scenarios to assess the 

robustness of encryption, key management, and error detection mechanisms under extreme conditions. These ideas 

focus on process improvements and system-level robustness, aligning with the practical needs of designers and 

verification engineers. 
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