
Guardians of the Chip: Mastering Next-Gen Security
for SoCs and IPs

Jagata Sridevi, Cadence Design Systems, India

Vishnu Prasad K V, Cadence Design Systems, India

Deep Mehta, Cadence Design Systems, India

The Silent Security Flaw: The Error That No
One Sees—Until It’s Too Late
What Happens When an Invisible Error Gets Through?

• AI models fail to predict correctly
• Cloud workloads corrupt sensitive data
• Autonomous vehicles misinterpret surroundings.

The Problem:
• A single verification blind spot can break encryption, corrupt transactions, and

disrupt entire systems

"How do we verify that security flaws in high-speed SoCs and IPs are caught
before deployment?"

What Verification Engineers Can Take Away
This Presentation at a Glance

• Unveiling critical blind spots in high-speed protocol verification

• Introducing five techniques that enhance security & debug efficiency

• Learning how these methods bridge gaps in security verification

• What You’ll Take Away Today?
• A fresh way to identify and fix hidden verification blind spots.

• These techniques can be applied to other high-speed protocols and SoC/IP verification.

• Smarter debugging, stronger security, and a higher verification confidence level.

• By recognizing and addressing hidden blind spots, engineers can improve design robustness
and accelerate debugging

What is IDE in PCIe?
• IDE is a security feature in PCIe that ensures data integrity and confidentiality over the PCIe link for

TLP’s.

• Protect data from tampering (integrity).

• Prevent unauthorized access (encryption)

K
eys

DOE

Data

Encrypted /Protected Data

PCIe/CXL with IDE and Authentication??
• Physical Link as a Possible Source of Attacks and

• The PCIe or CXL component, handles encrypted data
transmission.

• Uses AES-GCM for data confidentiality.

• Key Management: Handles secure key generation,
exchange, and refresh.

• Using CMA and SPDM, we establish a secure
communication channel and Prevents unauthorized
access.

• DOE to exchange security-related messages, including
authentication and key exchange processes.

IDE Streams and Data Flow
Link IDE Stream (Yellow)

• Encrypts all traffic over a PCIe/CXL link,

• This approach adds encryption overhead, which may
impact performance

Selective IDE Stream (Blue)

• Secures only specific traffic (e.g., based on address or
transaction type).

• This helps balance performance and security, allowing
non-sensitive data to flow unencrypted.

• More flexible, as encryption is applied only to selected
streams, optimizing performance.

IDE Capability Discovery & Register Structure
How is IDE Capability Advertised and Discovered?

• Devices supporting IDE announce their capability in PCIe/CXL
Configuration Space.

• The IDE register structure includes repeating blocks, which allow

• Link IDE Register Blocks - 8 times

• Selective IDE Stream Register Blocks - 255 times

• IDE Address Association Blocks to be repeated as needed
(allowing dynamic mapping of encryption).

Hosts can dynamically associate addresses or RIDs with IDE for flexibility
and efficiency.

Layered IDE Packet Security Framework(Contd.)

IDE Packet Verification – Determines whether the packet is IDE encrypted.

Stream Verification and MAC – Ensures the packet belongs to an authenticated stream
and Checks data integrity using Message Authentication Code.

PCRC Validation – Detects packet errors using a cyclic redundancy check

IDE Decryption Flow

Misrouted
IDE

IDE Field
Checkers

IDE Check
Failed

PCRC Error

Layered IDE Security Framework
and Techniques

Layered IDE Packet Security Framework
Initialize IDE Settings and Configure Secure Stream – Establish foundational security parameters
and Define conditions for secure data exchange.

Key Management and Exchange – Establish, refresh, and distribute encryption keys securely

Secure Stream Enablement and Initialization –TEE enters a secure state

Enable IDE
Encryption for each

stream with
assigned keys

IDE Encryption Flow
Secure streams
are set, and TEE
enters a secure

state.

Layered IDE Packet Security Framework(Contd.)

IDE Packet Verification – Determines whether the packet is IDE encrypted.

Stream Verification, PCRC and MAC – Ensures the packet belongs to an authenticated
stream and Checks data integrity using Message Authentication Code.

IDE Decryption Flow
Misrouted

IDE
IDE Check

Failed

Misrouted
IDE

PCRC Error

1)State Machine for IDE Capability Discovery
A structured Finite State Machine (FSM)
approach to streamline IDE capability
discovery in complex configurations like link-
based and selective streams.

 Structured & Predictable – Organizes IDE
discovery into distinct states.

 Automation & Efficiency – FSM automates IDE
checks, reducing manual intervention.

 Improved Verification Accuracy – Ensures
compliance with the IDE specification.

 Enhanced Team Alignment – Provides a clear
framework for verification teams.

Indication of

which FSM with

meaningful names

Indication of state

transitions

State Machine for IDE Capability
Discovery(Contd.)
Capability Discovery Process

• The FSM moves through CAP_BEGIN → IDE_BEGIN → IDE_LINK_STR → IDE_SEL_STR →
IDE_SEL_ADDR and so on, meaning it's discovering what IDE capabilities exist for the given port or
function.

• IDE_SEL_STR (Selective Stream Mode) and IDE_SEL_ADDR (Address-Based Selection Mode)
appear multiple times, suggesting that the FSM is dynamically evaluating different modes.

Looping Nature of the FSM

• The FSM loops back from CAP_END to CAP_BEGIN, indicating that capability discovery for control,
status and Address association blocks is a recurring process rather than a one-time setup.

• Transitioning back to CAP_END suggests that once all possible configurations are evaluated, the
FSM finalizes the IDE settings.

2)Operation Codes in IDE Context
Issue: Multiple APIs for IDE operations → Inefficiency & fragmentation

Solution: Unified OpCode-Based API

Simplified API – One structure for all operations

Scalable & Flexible – Easy future expansion

Faster Debugging – OpCodes streamline testing

Improved Readability – Clear & structured approach

• OpCodes mapped to specific IDE operations.
• Each operation has a unique identifier prefixed with “PCIE_IDE_OPCODE_”
• Instead of using multiple APIs, each function is assigned a unique opcode for streamlined

execution.

Standard Prefix

and meaningful

for all OPCODE’s

Operation Codes in IDE Context (Contd.)
• The below execution shows how the defined OpCodes are being used in real operations.
• The system updates different registers like IDE_OPCODE reg, IDE_DATA reg using OpCodes.
• Also, opcodes are used dynamically at runtime to manage IDE operations efficiently.
• Data Written to the Opcode indicates that values are being assigned to registers based opcode

operations.

Data Written

to the Opcode

Operation

Performed via

OPCODE

sets the Selective Stream
Control Register

Indicates the creation of
a new IDE stream

3)White Box Logging
• The below execution shows how the defined OpCodes are being used in real operations.

Transmitter Input and

Output data

Receiver Input and

Output data

Relevant Data and

Information

White Box Logging (Contd.)

Limitations of Black Box Logging Only captures inputs and outputs without revealing what
happens internally, So debugging is difficult as there’s no visibility into intermediate steps
White Box Logging is an advanced debugging approach that provides deep visibility into
internal operations

Faster Debugging – Trace security & performance issues easily
 Data Integrity Validation – Ensures correctness of transformations
 Reliable Tracking – Essential for high-security applications
 Enhanced Error Detection – Combine with protocol checks for compliance

White Box Logging ensures full transparency, making security debugging faster, accurate, and

reliable!

4) Modular Debug Hooks

Modular debug hooks provide structured traceability and transparency within
layered architectures like PCIe and CXL, enhancing debug efficiency while
maintaining minimal overhead.

• Captures transactions at entry & exit

• Logs movement from TL to DL layer.

• Simulates issues like corrupted TLPs & misrouted data.

• Reduces manual log inspection by correlating transaction points.

IDE Layer callback for

Error Injection or can be

used as Debug hooks

5) Flexible Verification Methods for IDE
Functionality
This technique provides alternative verification approaches when the DUT lacks full IDE
support, such as authentication and key management.

Authentication Bypass (Front-Door Approach)
• VIP initiates authentication independently using a front-door opcode mechanism.

Backdoor Key Management (KM Bypass)
• Directly injects IDE keys into the environment, bypassing standard KM protocols.

Allows full IDE testing even with partial feature availability, and Works independently of DUT’s IDE
maturity, accelerating verification.

We can start front-door

authentication process

We can set user key to

start KM process

(a) Handling Invalid Routing ID and Error
Classification
• The RX side may not have a well-defined behavior for handling invalid Routing IDs, leading to

security risks or misrouted packets.

• Incorrect error classification can occur if multiple fields (e.g., Routing ID, PCRC, MAC) are
corrupted simultaneously due to the dependency

Mitigation Strategy:

• Inject invalid Routing IDs and verify consistent RX behavior.

• Use fine-grained error injection to isolate field-specific corruption and prevent misdiagnosed.

Risk:

A PCIe Root Complex forwards TLPs with an incorrect Routing ID. The Endpoint doesn’t have a
clear rule—should it discard, flag, or forward them? If mishandled, this can lead to unauthorized
memory accesses or silent data corruption in an SoC

(b)Handling Pending Packets in Secure-to-
Insecure Transitions
• Pending IDE packets or non-IDE Packets may be misrouted or processed when transitioning from

secure to insecure mode which compromise security

• Selective and Link IDE Streams precedence issues may result in unprotected transactions when
both are active.

Mitigation Strategy:

• Ensure pending TLPs and Non-IDE TLP’s are properly flushed or reclassified before security mode
changes to Insecure.

• Define clear Selective vs. Link IDE precedence rules in the verification plan as per spec’s.

Risk:

 A PCIe in an SoC downgrades to Insecure mode during link reinitialization. If pending encrypted
TLPs aren’t flushed, some TLPs may be exposed in plaintext before reaching the host, leading to
potential data leaks.

(c)Credit and Counter Management Under
Error Conditions
• Improper credit tracking during error handling may cause protocol deadlocks.

• Underflow conditions must be managed, and overflow testing (2^1024 TLPs) is impractical.

Mitigation Strategy:

• Use white-box logging to monitor credit updates during error-handling scenarios.

• Implement independent RX and TX counters on both DUT and VIP sides to validate underflow
conditions and overflow conditions to avoid performance overhead as well.

Risk:

 A PCIe switch handling IDE-encrypted TLPs discards a corrupted packet but forgets to update the
credit counter. This eventually leads to a transaction stall, as the root complex believes credits are
exhausted.

(d) Multi-Stream IDE Verification in Mixed
Traffic Classes
• Verifying transactions across multiple Stream IDs with a mix of link and selective encryption.

• Ensuring encryption enforcement, integrity checks, and protocol compliance across random traffic
class (TC) transactions

Mitigation Strategy (Extended):

• The recommendation here would be to initiate transactions for different traffic classes in a
random fashion with a mix of encrypted and unencrypted TLPs for good path testing.

Risk:

 Unencrypted TLPs may be incorrectly forwarded in encrypted paths which Potential data leakage
and integrity failures.

(e)IDE Key Management and Synchronization
Issues
• Key Mismatch During Transitions: When switching between encryption key sets (e.g., from k=0 to

k=1), there may be desynchronization between the sender and receiver, causing decryption
failures.

• If the encryption key is expired or incorrectly rotated, TLPs may be unintentionally dropped or
misrouted.

Mitigation Strategy:

• Implement controlled key switching mechanisms and track key synchronization events.

• Verify that both the DUT and VIP handle key mismatches gracefully without silent data loss.

Risk:

 A PCIe endpoint key shifts for encryption, but the RC fails to update the decryption key in time.
As a result, the host discards all incoming encrypted TLPs, breaking the data flow.

Addressing Blind Spots with Targeted Techniques
Technique Testbench Application SoC/IP Verification Impact Challenges Addressed

State Machine for
IDE Capability
Discovery

Ensures seamless state
transitions, preventing
security misconfigurations.

Ensures correct IDE activation
across multiple IPs and maintains
consistency in security
enforcement.

Handling complex IDE state
transitions and preventing
misalignment between security
states.

Operation Codes in
IDE Context

Validates secure OpCode
processing, eliminating
protocol violations and
security risks.

Detects opcode misrouting and
prevents unauthorized access or
manipulation.

Ensuring protocol compliance and
preventing side-channel attacks
due to incorrect OpCode handling.

White Box Logging Provides deep visibility into
IDE transactions, tracking
encryption integrity in real-
time.

Enables real-time monitoring of
IDE transactions.

Tracking encrypted transactions
without exposing sensitive data
and maintaining real-time
traceability.

Modular Debug
Hooks

Enables targeted debugging
and anomaly detection,
ensuring correct IDE
behavior.

Allows selective activation of
debugging features for runtime
security verification.

Providing efficient debugging
mechanisms without interfering
with the secure execution of IDE
transactions.

Flexible Verification
Methods for IDE
Functionality

Adapts to dynamic test
conditions and directed
testing

Ensures IDE security remains
robust.

Maintaining verification
scalability.

Eliminating Blind Spots in IDE Verification for
PCIe & CXL
Bug 1: Protocol Flit Transmission

• Flits from the next MAC Epoch transmitted before TMAC flit, violating spec.

Bug 2: Mixing IDE & Non-IDE TLPs in the Same Flit
• Selective Streams allowed IDE & Non-IDE TLPs together but lacked clear differentiation.

Bug 3: Address Association Block Register Reconfiguration Issue
• Address Association Block Register locked post-initialization, reducing runtime flexibility.

Bug 4: Flushing queue (non-IDE + IDE traffic in pending queue)
• Handling buffer resets without data loss or security issues when both encrypted (IDE) and

non-encrypted traffic are in the queue

Innovative Verification Methodology & Impact

• Targeted Blind Spot Elimination – Applied state-aware validation, protocol-
specific error injection, and adaptive debugging.

• 97% IDE Verification Coverage – Achieved using ML-driven regression, improving
test efficiency and accuracywithin a very less span of Verification Timelines.

• Significant Debugging & Manual Effort Reduction – Improved testbench
automation and real-time error traceability.

• Scalability Beyond PCIe & CXL – Techniques extend to Ethernet, HDMI, MIPI, and
future high-speed protocols.

Conclusion

• These five techniques enhance multi-layered IDE verification by enabling state-
aware security validation, deep transaction visibility, and adaptive debugging in
testbenches.

• They ensure seamless encryption-decryption flows, error resilience, and robust
security compliance across SoC and IP verification.

• They ensure preventing security blind spots in PCIe and CXL environments

Questions

	Slide 1: Guardians of the Chip: Mastering Next-Gen Security for SoCs and IPs
	Slide 2: The Silent Security Flaw: The Error That No One Sees—Until It’s Too Late
	Slide 3: What Verification Engineers Can Take Away
	Slide 4: What is IDE in PCIe?
	Slide 5: IDE Streams and Data Flow
	Slide 6: IDE Capability Discovery & Register Structure
	Slide 7: Layered IDE Packet Security Framework(Contd.)
	Slide 8: Layered IDE Packet Security Framework
	Slide 9: Layered IDE Packet Security Framework(Contd.)
	Slide 10: 1)State Machine for IDE Capability Discovery
	Slide 11: State Machine for IDE Capability Discovery(Contd.)
	Slide 12: 2)Operation Codes in IDE Context
	Slide 13: Operation Codes in IDE Context (Contd.)
	Slide 14: 3)White Box Logging
	Slide 15: White Box Logging (Contd.)
	Slide 16: 4) Modular Debug Hooks
	Slide 17: 5) Flexible Verification Methods for IDE Functionality
	Slide 18: (a) Handling Invalid Routing ID and Error Classification
	Slide 19: (b)Handling Pending Packets in Secure-to-Insecure Transitions
	Slide 20: (c)Credit and Counter Management Under Error Conditions
	Slide 21: (d) Multi-Stream IDE Verification in Mixed Traffic Classes
	Slide 22: (e)IDE Key Management and Synchronization Issues
	Slide 23: Addressing Blind Spots with Targeted Techniques
	Slide 24: Eliminating Blind Spots in IDE Verification for PCIe & CXL
	Slide 25: Innovative Verification Methodology & Impact
	Slide 26: Conclusion
	Slide 27: Questions

