
Efficient application of AI algorithms
for large-scale verification environments

based on NoC architecture

Anna Ravitzki,Vtool doo, Belgrade, (annar@thevtool.com)

Olivera Stojanovic, Vtool doo, Belgrade, Serbia (oliveras@thevtool.com)

Nemanja Mitrovic, Vtool doo, Belgrade, Serbia (nemanjam@thevtool.com)

Abstract—The growing complexity of SoCs is challenging the efficiency of present-day verification approaches,
making verification processes increasingly more involved. As waveform databases expand in size and simulation
run-time becomes more time consuming, logs and code execution traces are harder to read and understand. This
requires greater resourcefulness from verification teams, alongside more powerful verification tools. By addressing
the various complex SoC verification bottlenecks, this paper proposes a viable, highly effective verification solution
that uses Big-Data techniques for analyzing standard verification outputs. The new approach presented here
transforms traditional debugging by applying proven AI techniques and algorithms on unified Big-Data datasets,
derived from multiple sources. To highlight the applicability and potential of AI for complex SoCs verification, the
new approach is tested, demonstrated, and ultimately proven to be successful using several NOC verification
examples. It provides the nearest endpoints addresses algorithms, proving to be highly more effective in matching
source and destination endpoints in failing transfers. The approach also suggests potential resolutions for common
failures by finding the common data values in failed transfers, and its time-scale analysis extracts deviations in
transfer execution time to suggest potential throughput issues, transfers timeouts, and more. Although standard
debugging methodologies can resolve such common NoC verification issues, the new AI-driven approach described
in this paper significantly accelerates SoC verification, transforming the entire verification process into a highly
efficient one.

Keywords—NoC (Network on Chip), SoC (System on Chip) verification, Cogita-PRO, AI (Artificial Intelligence),
Machine Learning (ML), Big-Data

I. INTRODUCTION

The immense variety of SoC applications has introduced a wide range of techniques for their development and
verification. In the realm of verification, each industry poses different challenges, such as the use of digital and
analog verification environments and checks in the automotive field or the debugging of large-scale data in the data
path processing field. This paper intends to focus on the latter, efficient debugging of high-complexity data path
SoCs.

In general, around 70% of the effort invested for taping out a complex data processing SoC is spent on
verification. Half of that effort, which translates to about 35% of the total invested SoC development time, is
invested in debugging.[1] Furthermore, studies show that IC/ASIC verification engineers spend more time on
debugging than on any other activity. Since debug time varies significantly between different projects, it introduces
insurmountable uncertainties in project planning and scheduling.[2]

Contemporary SoC complexity impacts verification, requiring expertise and combined knowledge in many
different domains such as hardware, software, analytical, and scripting. The main challenge in standard debug
verification of complex data path SoC has to do with the massive data infrastructure, including software source
code, disassembly, execution traces, UVM-SV source code, log files from verification methodology (e.g., UVM),
RTL design source code, waveforms, and schematics. Therefore, data path verification is data-intensive by nature,
slow, hard to understand and trace, and reliant on one focused part of simulation, which makes it a bottom-to-top
process. This paper proposes a new top-to-bottom approach that transforms verification into a macro-level process,
proving to be highly efficient and reliable since it is based on understanding the verification outcome as a one
Big-Data dataset, which is also suitable for AI algorithms and techniques.

The AI algorithms run through the whole dataset, presenting information about issues beyond the thinking scope
of the verification engineers, amplifying their capacity for capturing software irregularities and unused bandwidths
across interconnect transmission. This is crucial for ensuring improved performance in a radical way.

One of the many complex topics in verification of data processing SoCs, is NoC (Network on Chip). NoC is
typically distributed over the whole design, containing one main NoC and plenty of sideband NoCs as part of source
endpoints and memories. Thus, one transaction from source to destination point passes over several different NoCs,
transforming a global address many times until it reaches the destination. In addition, other transfer parameters are
compressing and decompressing during inter-NoC communication, introducing another layer for potential bugs.

Various projects have shown that, in large-scale SoCs, the following typical NoC verification challenges must be
resolved:

1) Unexpected transactions, for
 Matching source and destination endpoints in failing transfers
 Resolving common failures
 Security access transactions
 Caching transactions
 Interleaving burst translations

2) Error response transactions, for reserved and/or broken address ranges
3) Distribution of transactions, for qualifying test and verification environment
4) Utilization of outstanding transactions, for improved performance
5) Detection of repetitive transaction patterns irregularity, for measuring throughput and detection of transfer

timeouts
The number of transactions varies depending on the test goals, and often totals over a thousand, including

different source to destination transactions per single test. If the faulty transaction numbers are high, as is usually the
case in the beginning of a project, it is very hard to use standard debug techniques. The main issue here, is the time
required for reverse tracing destination to source endpoint from logs, and once the transfer issue is localized the
challenge is to trace it from waveforms and schematic tracers. The debug process is deductive, and certainly leads to
the resolution of the existing issue, but it is single-transaction oriented. Missing information is the number one issue
on which debug time is mostly spent, and compounded by the duration of repeated debug steps amount to inefficient
processes. Running regression can help somewhat in providing valuable information, but this is typically
unavailable in the beginning of a project.

To hurdle such pertinent verification issues, this paper proposes several AI algorithms that speed up the debug
process by analyzing the entire verification outputs as one single dataset. For example, the address correlation
(AC) algorithm is very suitable for efficiently matching source and destination endpoints in failing transfers. The
machine learning (ML) algorithms are perfect for resolving common failures, security access transactions, caching
transactions, interleaving bust translations, and for finding reserved and/or broken address ranges. Statistical
algorithms (SA) provide a good overview of covered transactions and can measure the quality of tests and
verification environments. Algorithms used for detection of repetitive patterns and irregularities over the whole
database are a good match for measuring throughput and detection of transfer timeouts. In addition, a combination
of algorithms will be proposed, showing outstanding transaction utilization.

The results presented in this paper have been successfully proven in several different NoC verification SoC
projects.

II. RELATED WORK
Increasing design complexities and time to market constraints have rendered verification to be a bottleneck in the

development process. To address this and enable technology to be released faster and bug-free, verification needs to
adopt new approaches and techniques. By its nature, verification is data-intensive and well-suited for the application
of machine learning (ML) techniques. In the industry, numerous ML algorithms have been tested across diverse
facets of functional verification, yielding varying levels of achievement mainly in requirement engineering, static
code analysis, verification acceleration, bug detection, and localization.[4]

EDA companies are investing in adopting ML and AI features to optimize multiple runs of multiple engines
across the entire SoC design and verification campaigns. These features are also applied in AI-driven bug prediction
to link test failures to RTL code changes, and in automatic test generation, resource optimization, and automated
test-case failure triage to improve verification workloads.[3]

This paper will focus on efficiently employing AI algorithms for debugging and resolving common performance
issues on large-scale verification environments, based on NoC architecture.

III. METHODOLOGY
The goal of this paper is to prove the successful application of specific AI algorithms and analysis on multiple

different projects. The chosen verification objective is complex HW/SW co-verification, developed in
SystemVerilog using UVM methodology and driven by C and UVM code test cases.

The platform proposed in this paper for exploring, extracting, and connecting the data over which AI algorithms
are run and results are visualized, is the AI-debugging tool Cogita-PRO. Inputs used for AI analytics were UVM log
file, execution file/tarmac, disassembly file, and waveform database. Each result presented in the paper is gained
using a single test case.
A. Unexpected transactions

One of the typical issues across SoC verification, is receiving transactions detected at the destination endpoints
but not predicted by the dedicated scoreboard in the destination queue. In practice, the number of mismatches
could be very high and their analysis very complex. Typically, such issues occur due to the presence of a system
of NoCs that introduce destination endpoints address translations. Per each mismatch, debug processes require
manual backtracking and calculation in order to understand source endpoint initiator. Additionally, outstanding
transactions and overlapping address and data phase result in the interleaving of mismatch cases, making the
debug process even harder and more time consuming. This paper proposes the use of a new algorithm, called
Address Correlation (AC) algorithm, for resolving source and destination endpoints mismatch, and also
demonstrates the use of ML algorithms for finding common failures.

The AI-debugging tool takes the address from the error transaction as a benchmark and runs an AC algorithm
using address values from all source transactions. The result is the exact failed transaction origin. Graphical
representation on the timeline of all messages related to this transaction indicates issues in prediction logic that are
related to address translation.

 ML algorithms are good candidates for simulations containing a large number of pass transactions with
sporadic failures. ML algorithms deploy all transaction fields and duration, while the classifier uses
passing/failing criteria. The result is visualized as a decision tree, presenting all the common values of every
failing transaction. In cases where the precision of the algorithm is less than 100%, potential checkers of
implementation issues are indicated.

B. Error response transactions
During initial SoC development, frequent updates and re-assignments of address space (reserve function, or

vice versa) generate hysteresis between design and verification update alignments, which requires additional
debug time to repeat the same verification tasks over again. Moreover, traditional debugging with standard
deductive techniques lacks the robustness needed for resolving complex issues quickly, slowing down the process
even more. To attain an efficient debug process with immediate analysis of the entire memory address space, the
ML algorithm proposed in section A is needed.

C. Transaction distribution
The functional and code coverage indicate the quality level of the verification environment and stimulus. Yet,

since they are typically unavailable before the project end phase, potential bottlenecks in the verification
environment remain hidden. By applying the SA algorithm over the dataset, it is possible to see the results at the
very beginning of the project, visualized on a heatmap. These results directly point out all the verification address
constraint issues. The visual distribution of extracted data values from log file and/or waveform provides insight
into the simulation quality, enabling engineers to promptly take action and improve the verification environment.
By rewriting the constraints and optimizing the distribution in the early stage of a project, the duration of
regression is slashed, enabling the last milestone to be reached much faster.

D. Outstanding transactions utilization
The utilization of maximum outstanding transactions affects performance significantly. According to the

number of temporary active transactions over a predefined time span, AI algorithms are capable of distinguishing
different data paths and interface utilizations. Low-level utilization in the simulations reveals the issues in the
design configuration of the number of outstanding transactions. The results are applicable for throughput and
performance analysis and for HW/SW profiling.

E. Repetitive transaction patterns irregularity detection
Some specific NoC back-to-back applications consist of the round-trip times (RTT) transaction set. RTT is

extracted from a dataset, based on the calculated duration of the transaction of request and response messages. In
simulation, the transaction set carries a typical repetitive pattern that AI algorithms easily detect from the RTT,
while also isolating irregularities. Additionally, by analyzing the time difference in execution of extracted
patterns, the AI algorithm also points out performance-related issues that are otherwise very hard to expose using
standard techniques.

IV. RESULTS AND DISCUSSION
Section III defines standard NoC verification issues, and proposes efficient AI-based debugging solutions. The

NoC verification problems are unexpected transactions, error response transactions, transactions distribution,
outstanding transactions utilization, and repetitive transaction patterns irregularities detection.
A. Unexpected transactions

The NoCs data path transforms the global address transmitted from source several times before it finally reaches
the destination. This makes the process vulnerable to many RTL bugs and verification environment errors in
predicting destination address. Figure 1 represents the AI AC algorithm that links missing source/destination
endpoint pairs.

Figure 1. The AI AC algorithm linking missing source/destination pairs

The missing source recognition is done by exploring the log file for correlated addresses. For example, (source

address, destination address) = (0xaa155940, 0x155940). This analysis enables the origin of the missing source
endpoints to be understood much faster, which is immensely beneficial for the entire process. Standard debug
techniques require the investigation of single transactions, one by one, but AI AC algorithms capture all the
mismatch results from a single transaction debug, all at once.

In addition to the significant acceleration of debug time, applying ML algorithms on the analysis results also
provides statistical information regarding the NoC issue root causes. Figure 2 represents what is common to all
mismatched source/destination address.

Figure 2. ML algorithm search of linked source/destination pair for finding common failures

Figure 2 presents the ML algorithm process outcome, based only on the classification and clusterization of

address values, taken from the previous analysis. The result clearly points at the one singular common cause of all
source/destination mismatch addresses, which Figure 2 exposes to be 0 at 25th bit of the transformed address. This
result points at either an RTL design issue, indicating the exact incorrect NoC address translation, or to a verification
environment prediction being incorrect.
B. Error response transactions

The most typical error, regardless of NoC presence and/or SoC complexity, is failures with accessing reserved or
unimplemented address space. If the error response transaction addresses fall within a similar range, it can point to

the access reserve address space. Figure 3 shows the ML algorithm classification and clusterization of address space
of the error response transactions.

Figure 3. ML algorithm classification and clusterization of error response address space

The ML algorithm is applied to all the transaction fields, while HRESP is used as a classifier. Based on the results

presented in Figure 3, all failing transactions accessing the address space are lower than the address value 0xC,
indicating reserved address space access. This points out issues in the usage of instruction memory addresses.
C. Transactions distribution

The functional coverage measures the quality level of the entire verification environment, yet during the
verification environment development phase the stimuli quality is not evaluated. Complex NoC-based SoCs
stimulus consists of transactions from multiple sources to multiple destination endpoints. Depending on the testing
subject, particular sources and destination endpoints are more or less triggered, which is highly valuable information
that is very hard to extract. It can point to either unreachable destinations, RTL design holes, or potential verification
dead loops of the same destination access. Figure 4 presents the distribution of source/destination endpoint transfers
on a heatmap generated by AI SA algorithms.

Figure 4. AI SA algorithm-generation heatmap of source/destination endpoint transfers distribution

The results point at the stimulus utilizing source 0 endpoint the most, initiating transactions to all destinations
except 13 and a few other sources/destination transactions. This behavior is expected, since destination 13 is not
accessible to source 0. If destination 13 was successfully accessed, it would be an RTL bug that is hard to catch at
such an early stage of a project.
D. Outstanding transactions utilization

The AI algorithm is fed with data per transaction, start time, end time, initiator number, and destination number.
Figure 5 shows the number of multiple outstanding transactions over time, revealing one bug in the design of the
number of outstanding transactions.

Figure 5. Number of multiple outstanding transactions over time

This bug is evident from the results, which show that the maximum outstanding transactions were never reached

during the simulation. The same algorithms are applicable for throughput and performance analysis and for HW/SW
profiling.
E. Repetitive transaction patterns irregularity detection

Instruction memory addresses of instruction are extracted from tarmac files, and visualized over the timeline. The
AI algorithm applied on transaction duration times indicates an irregularity in duration drops that occur during the
transfer. Figure 6 and Figure 7 show that isolated irregularities were detected, and that the correlation between them
represents HW/SW and HW data processing. The drop in bandwidth utilization happens occasionally during the test
execution.

Figure 6 Detected irregularity of memory address values

Figure 7 Detected irregularity of transaction duration

V. CONCLUSION

This paper presents a new and highly efficient debug approach based on a set of AI algorithms, which is applied
to big datasets extracted from simulation output results. It demonstrates the viability of this approach, proven for
NoC-based SoC verification through several examples. The major benefits of this approach, applied over the AI-
driven platform Cogita-PRO, is the optimized time reduction achieved for the debug process and the improved
HW/SW utilization, performance, and throughput issues. The debug techniques are suitable for large-scale complex
SoC verification environments and HW/SW co-verification.

In terms of time reduction, AI AC algorithms link all mismatched sources/destinations pairs in the same time span
it would have taken standard debugging to link only a single pair. In addition, ML algorithms reveal the exact NoC
address translation issues in RTL. When applied to error response transactions, these same ML algorithms classify
and cluster the address space ranges, revealing the access to either reserve or unimplemented address spaces. The AI
SA algorithms applied on source/destination transfers bring to play valuable transactions distribution. Thus, the new
approach provides the utilization of a particular source and/or destination, while disclosing the unused or forbidden
accesses in RTL. Analyzing the outstanding transactions utilization, AI algorithms provide insight regarding the
RTL throughput and performance. Finding repetitive transaction patterns by AI algorithms points to irregularities
detected in the data processing.

Finally, this paper demonstrates the power of AI algorithms for accelerating the debug process, and the
applicability of AI algorithms for analyzing bottlenecks, HW/SW correlation, root cause analysis, throughput, and
detection of irregularities. Based on these conclusions, it can be asserted that the potential of AI algorithms is
limitless for optimizing verification. Further industry research and exploration will ultimately reveal their usage for
automatic test generation, bug analysis, requirements versus design implementation crosscheck, and all other areas
where verification workloads can be alleviated, as this paper has shown.

REFERENCES
[1] M. Sanie, “Debugging the debug challenge”, Synopsys, 2013. [Online]. Available:

https://www.techdesignforums.com/practice/technique/debugging-debug/
[2] Harry Foster, "2022 Functional Verification Study," Wilson Research Group and Siemens EDA,

https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study/,
retrieved on Nov. 18, 2022

[3] M. Graham, “Verification 2.0 – Multi-Engine, Multi-Run AI-Driven Verification”, in Proceedings of Design and Verification Conference
(DVCON), Munich, Germany, 2022.

[4] Dan Yu, Harry Foster, Tom Fitzpatrick, A Survey of Machine Learning Applications in Functional Verification” in Proceedings of Design
and Verification Conference (DVCON), San Jose, US, 2023.

