RISC-V Security Verification using
Perspec/Portable Stimulus

Junxia Wang, Siyan.Li, Leven.Li
MediaTek Building 1-B, No. 6 Park, Jiuxiangiao Road, Chaoyang District, Beijing China

Junxia.Wang@mediatek.com, Siyan.Li@mediatek.com, leven.li @mediatek.com

AT S Prasad, Kiran Kumar Palla, Yung Cheng Chen
Cadence Design Systems, 2655 Seely Ave, San Jose, CA95134, USA
atprasad @cadence.com, kpalla @cadence.com, vicchen@cadence.com

Abstract- Modern SoC security features restrict accesses of shared memory and system resources
only to the privileged agents in the system. RISC-V processor architecture enforces security witha
Physical Memory Protection (PMP) specification. The complex PMP hardware poses a verification
challenge. This paper describes how the Portable Test & Stimulus (PSS)? and EDAtools, suchas
Perspec”!, are used to efficiently verify security aspects of RISC-V based SoCs

I. INTRODUCTION

Modern SoC, designed for automotive, mobile or data center applications, typically has multiple
processors, multi-level cache hierarchy, and multiple subsystems that share memory and system
resources. Open access to shared memory and resources by all agents in the system leaves security
holes in the SoC design. In RISC-V architecture based SoCs, this problem is addressed by Physical
Memory Protection (PMP)E! hardware unit by limiting the physical addresses accessible by
software running on a processor core. A PMP unit tackles the security aspect related to physical
memory access privileges — read, write, execute pemissions — in different execution modes of a
processor core.

A RISC-V PMP unit is a programmable hardware block that allows multiple memory regions to be
specified, each with its own privilege access policy per processor core. In a multi-cluster, multi-
processor SoC context, verifying PMP is a complex challenge due to large space of concerning
crosses of PMP regions, cores, access policies. The complexity is amplified when Physical Memory
Attributes (PMA)E! - like shareability, cacheability, exclusiveness - are thrown into the verification
mix. Another challenge is creating testsand test infrastructure to verify negative security scenarios.
For example, forcinga privilege access violation to check the expected system response & behavior.

The SoC design used for thiswork is a typical system consisting of multi-core RISC-V 64-bit
(RV64) CPU with PMP unit, few system memories anda cache sub-system.

This paper describes howthe Portable Test & Stimulus (PSS)™? and EDA tools, such as Perspec, are
used to efficiently verify security aspects of RISC-V based SoCs. PSS modeling of various SoC
security test scenarios for verifying PMP features is described. PSS modeling for both positive and
negativesecurity tests is demonstrated.

I1.OVERVIEW OF RISC-V PMP SPECIFICATION

In SoCs, it is desirable to limit the physical addresses accessible by software running ona hart (aka
hardware thread). Such limitation helps supportsecure processingand contain faults in the system.

There are three kinds of privilege mode on RISC-V environment (Table 1). Code run in M-mode
mode is often trusted. M-mode can be used to manage secure execution on RISC-V. U and Smode
are intended for application and operating system usage respectively. An optional Physical Memory
Protection (PMP) hardware unit provides per-hart machine-mode M-mode (Table 1) control
registers to allow physical memory access privileges (read, write, execute) to be specified for each
physical memory region. The programmed PMP values are checked forall accesses whose effective

mailto:Junxia.Wang@mediatek.com
mailto:Siyan.Li@mediatek.com
mailto:leven.li@mediatek.com
mailto:atprasad@cadence.com
mailto:kpalla@cadence.com
mailto:vicchen@cadence.com

privilege mode is S or U(Table 1). Accesses without proper pemissions will trigger access fault
exceptions.

Level (Mode) Name Abbreviation
0 User U]

1 Supervisor S

2 Reserved

3 Machine M

Table 1: RISCV-64 Privilege Level (Mode)

A PMP unit implementation may support 0, 16 or 64 entries. These entries divide the physical
address space into different regions with varying access pemmissions (Table 4). It is achieved by
configuring pmpcfg and pmpaddr registers for each region. Below description of PMP registers
illustrates the register layout for 64 entries. However, the PMP hardware unit in our SoC design
supports only 16 entries (physical memory regions).

PMP Registers
RISC-V specification describes two sets of Control and Status Registers (CSR) to implement PMP
feature.
e PMP configuration registers: 16 CSRs pmpcfg0-pmpcfgl4 hold the PMP
configurations, pmp@cfge-pmp63cfg, for 64 physical memory regions. Odd numbered
pmpcfgregistersare invalid. See Figure 1

63 56 55 48 47 40 39 32 31 24 23 16 15 87 0

| pmp7cfg | pmpbefg | pmpbefg | pmpdefg | pmp3efg | pmp2cfg | pmplefg | pmpOcfz | pmpcfg0
8 8 8 3 8 8 8 8

63 56 55 48 47 40 39 32 31 24 23 16 15 87 0

| pmpliefg | pmpl4cfg | pmpl3cfg | pmpl2cfg | pmpllclg | pmplOcfg | pmp9cfg | pmp8cfg | pmpcfg2
8 8 8 3 8 8 8 8

63 56 55 48 47 40 39 32 31 24 23 16 15 87 0

| pmp63cig | pmp62efg | pmpb6lefg | pmp60cfg | pmpH9cfg | pmp58cfy | pmphTefg | pmpibefg | pmpcfgld
8 8 8 3 8 8 8 8

Figure 1: RV64 PMP Configuration CSR Layout

7 6 5 4 3 2 1 0
[L(WARL) | 0 (WARL) | A (WARL) X (WARL) [W (WARL) [R (WARL) |
1 2 2 1 1 1

Figure 2: PMP Configuration CSR format

Figure 2 shows the layout of 8-bit PMP configuration register. The R, W, and X bits, when set, indicate that
the PMP entry pemits read, write and instruction execution, respectively. When one of these bits is clear,
the corresponding access type is denied. The ‘L’ bit indicates that the PMP entry is locked. Any writes to
the configuration and associated address registers are ignored. The ‘A’ field encodes the address-matching
mode of the associated PMP address register. When Abit is 0, PMP functionality is disabled.

Name Description

OFF Null region (disabled)

TOR Top of range

NA4 Naturally aligned four-byte region

3 | NAPOT | Naturally aligned power-of-two region, >8 bytes

o = O

Figure 3: Encodingof Afieldin PMP Configuration registers

o PMP addressregisters: The PMP address registers are CSRs named pmpaddre-

pmpaddr63. Each PMP address register encodes bits 55:2 ofa 56-bit physical address for

RISCV-64 bitscores.

Thus, with a combination of PMP configurations and address matching modes, the PMP unit
enhances security of a RISC-V SoC by supporting granular control of permissions across multiple
physical memory regions. Moreover, the pemmissions can be dynamically re-programmed by each

hart to enforce it’s own security policy on the system memory and resources.

111. USING PERSPEC LIBRARY AND PSS SCENARIOS FOR SECURITY VERIFICATION

This section describes how Portable Stimulus & Test Standard (PSS) can be used to model PMP
features and create test scenarios that verify PMP functionality. We describe the test development
process in multiple incremental steps — starting from building blocks to full scenario specification to

random scenario variations.

Test developmentusing PSS follows below process:
1. Modelcompute subsystem (processor-memory)

2. Model PMP features

3. Develop security test scenarios using PMP features

4. Create testvariationsto coverconcerningcross of PMP features

Step-1: Model compute subsystem (processor-memory)

The approachto modelingthe compute subsystem is elaborately described in a previous work.™ We
will repeatonly the relevanthighlights fromthereferenced paper.

Using the Perspec Coherency Library, the “modeling” process of the compute subsystem required no
coding. We just needed to fill out the information related to the processor cores, the clusters, the memory
types/sizes, the cache structure, etc., in the Perspec configuration tables. These tables were captured in an

Excel/csv configurationfile.

This “modeling” process of our SOoC compute subsystem was done in a couple of hours. Most of this time
was spent tracking down the design informationrequiredto fill out the Perspecconfiguration tables.

Table 2 and Table 3 showan example of the processor and memory configurationtables.

* Table 2 - “processor_info” table: this table describes the processor subsystem of the design; the columns

in thistable representthe attributes of thedesign; some key attributes are:

o #tag: nameoftheprocessorcores;thereare 4 of themin cluster RO: hartOto hart3

o #kind: thekind/type of processor

o #cluster: nameof theprocessor clusters; onecluster RO
* Table 3-“memory_info” table: this table specifies thedifferent memory blocks and their address ranges.

In thisexample, we have:

o #mem_block: Three different memoryblocks: mem0, mem1, mem?2
o #enabled: When TRUE, the memory block isenabled in the design

A B
1 @table: processor_info
2 |®package: sml_pkg
3 |#ag Zkind
4 |hart0 RISCV
5 |hart1 RISCV

6 hart2 RISCV

7 |har3 RISCV

|

#cluster

C

®size_const: NUM_OF_CORES @struct: sml_processor_info_s

|

o

coo

D

|

3

E

| F

TRUE
TRUE
TRUE
TRUE

]

G__|

RISCV._C NA
RISCV.C NA
RISCV_C NA
RISCV_C NA

H

|

FULL
FULL
FULL

|

TRUE
TRUE
TRUE

|

|

K

FALSE
FALSE
FALSE
FALSE

L

#cluster_id| #core_id| #enabled| #scheme| #hd|_path|[#coherency_level| #exclusive_able [#power_d.|#powers_.
FULL

TRUE
FALSE
FALSE
FALSE

|

M

#barrier_..

TRUE
TRUE
TRUE
TRUE

|

N

#clock_p.
80ns
80ns
80ns
B0ns

Table 2: processor_info table

A _ B] C | D] E | F | G] H] |
1 |@table:memory_info
2 |@package: sml_pkg @size_const NUM_OF_MEM_BE.. @struct: sml_memory_info_s

3 |#mem_block #base_addr #end_addr #alignment #enabled| #backdoor_enabled| #exciusive_able |#atomics_supported [#is_|2_lim
4 |mem0 0x90000000 Ox97FFFFFF 1 TRUE FALSE TRUE TRUE TRUE
5 |mem1 Ox98000000 Ox99FFFFFF 1 TRUE FALSE TRUE TRUE TRUE
6 mem2 OxAQ000000 OxA1FFFFFF 1 TRUE FALSE TRUE TRUE TRUE

Table 3: memory_info table

Once above configuration tables were filled out, we were able to bring-up Perspec, create memory
access testsusing Perspec GUI (Graphical User Interface) and/or writing the PSS code directly. We
were able to pipe clean the PSS based verfication flow quickly using the generated tests before
movingon to thenext step.

Step-2: Model PMP features

The next step is to startingmodeling security features in PSS that serve as building blocks for more
complicated and full security test scenarios. Table 4 and Table 5 describe PMP and PMA
configuration of the RISC-V SoC. These tables are then used to populate various attribute values,
define constraints in the PSS model. For brevity, only key table columns are discussed.

Table 4 —Physical Memory Protection (PMP) table - describes PMP entries in CSV tables. Some
important columns are:

e #region: Unique physical memory region identifier (integer)

e #start_pa: Start address of physical memory region of this PMP entry

e #size: Size of theregion

o #region_type: Supportaddress-matchingmodes (The ‘A’ field of PMP configuration

register)
e #region_permissions: Read, Write, Execute pemission and L-bit

#tregion #start_pa ttsize #region_type t#tregion_permissions
) 0Xx0000_0000 26G TOR L,R,W,X
1 0x8000_0000 2M TOR L,R,W,X
2 0x9000_0000 2M TOR, NA4, NAPOT W,X
3 0x9000_0000 16M TOR, NA4, NAPOT W, X
4 0x9200 0000 2M NAPOT R
5 0x9200_0000 8M TOR, NA4, NAPOT R,W
6 0x9300_0000 2M TOR, NA4, NAPOT R,W,X
7 0Xx9400_0000 16M TOR, NA4, NAPOT L,R,W
8 0x9200_ 0000 16M TOR, NA4, NAPOT L,R
9 9x9500_ 0000 8M TOR, NAPOT L,R,W,X
10 0x9600_0000 2M TOR, NAPOT W, X
11 0x9620 0000 2M TOR, NA4, NAPOT X
12 0x9640 0000 2M TOR, NA4, NAPOT L,R,X
13 0x9660_0000 2M TOR, NA4, NAPOT L,X
14 0x9680_0000 2M TOR, NA4, NAPOT L,W
15 OX96A0_0000 2M TOR, NA4, NAPOT L,W,X

Table 4: Physical Memory Protection (PMP) table

Table 5 — Physical Memory Attributes (PMA) table — describes the Shareability, Cacheability,
security attributes of a memory region. Virtual to physical address mapping (address translation)
informationisalso capturedin thistable. Key table columnsare:

e #va:virtualaddress of the memory region

e #pa: physicaladdress of the memory region

e #mem_block: memory region name. This example has 3 blocks: mem0O, mem1, mem2

e #size: size of the memory region

o #shareability: specifies if the memory region is shareable or not

t#tva #pa #mem_block #siz #shareability

e

0x9000 0000 0x9000_0000 meme 128M shareable
0x9800_0000 0x9800_0000 meml 32M shareable
0xA000_0000 OxA000_0000 mem2 32M shareable

Table 5: Physical Memory Attributes (PMA) table

Once the PMP and PMA tables were filled out, PSS atomic actions were modeled. Here are few
atomic actions that were implemented that serve as building blocks to create larger SoC level
scenarios:
e Privilege Mode switching—M, S, U (Table 1) RISC-V privilege modes. Thisaction
generates code for privilege modeswitching.
e Selecta PMP region and randomize it’s attributes. Thisaction generates code toprograma
PMP region.
Generic actionsto write and read memory regions.
Action to select and program specific RISC-V CPU registers.
e Actionsto installtrap handlers.

Action Name UML Diagram Description
switch_privilege_level
o© switch_privilege_level SWItCh.hart
oreton s execution mode
Afrom_mode U_MODE between M’ S’
Ato_mode 5_MODE and U mOdes
set_pmp_full_access PermitS & U
modes full
o set_pmp_full_access RvaX .
) permissionsto
ST accessallPMP
entries

cdn_riscv_config_pmp_region

a0: cdn_riscv_config_pmp_region

coretag hart0

Configure
(program) PMP
registers based
onthe
configuration
specified in PMP
table

set_pmp_region

o set_pmp_region

core.tag hart3

AR FALSE
AW FALSE
AX FALSE
AL FALSE

Configure (re-
program)
specific
permissionsofa
selected PMP
region

cdn_psriscv_reg_write

g ¢ cdn_psriscv_reg_write

core.tag hart3
Aselected_reg SATP64

Program RISC-
V system
register with
specific value

install_mmode_trap_handler

install_mmode_trap_handler

coretag hart0

Override user M-
mode (Tablel)
trap handler

install_smode_trap_handler

install_smode_trap_handler

Override user S-
mode (Tablel)
trap handler

coretag hartd
write_data* Write random
data of specified
size to a selected
a0: write_data
memory block
coretag hartl
out buff
G smi_data_buff
Amem_seg.addr 0xa04c5273
Amem :;Pg block tag mem?2
read_check_data* % smi_data_buff Read_and check
Amem_seg.addr 0xa09118¢c2 (previously
Amem_seg.block_tag mem2 Writter) data
4 from a selected
a0: read_check_data memory block

coretag hart1

Table 6: Atomic actions required for complex scenarios

* Actions available in Perspec coherency library.

Step-3: Develop security test scenarios targeting PMP features

This section describes, using an example, how to create a PSS test scenario to target PMP features,
using PSS atomic actions developed in the previous step.

Creating a legal testscenario: pmp_write_data_in_smode

o Do same set of operations concurrently on each of the selected harts:
o Enable addresstranslations in S(supervisor)-mode by programming SATP
(Supervisor Address Translation and Protection) register
o Configure PMP entries as defined in PMP table (Table 4)

o Switch privilege level from M to Smode(Table 1)

o Perform write accessin S-mode

Figure 4 shows PSS model forthe testscenario describe above

Mame
.‘3-_ scenario[sequence]
l« %y a0: pmp_write_data_in_smode

&+ sequence
< schedule[gentime]
-Gy, foreach

& do_on_proc

& Sequence

+% select_SATP

write_data

cdn_riscv_config_pmp_region
—® switch_privilege_level

Figure 4: PSS Scenarioforpmp_write_data_in_smode

Figure 5 shows UML diagram of the PSS implementationof pmp_write_data_in smode
scenario described above. Figure 6 shows the 2™ solution generated by PSS tool for different
assignmentof coresand memory blocks

Ch > cdn_psrlsw_reg_wrlte

core.tag hart2

nselected_reg SATP64

g © cdn_riscv_config_pmp_region

core.tag hart2

=k switch_privilege_level

coretag hart2
rfrom_mode M_MODE
5_MODE

Ato_mode

g write_data

coretag hart2
out_buff
0@ smi_data_buff

Amem_seg.addr 0x945fe3ae
Amem_seg.block_tag memO

a o cdn_psrlscv_reg_wrlte

coretag hart1

nselected_reg SATP64

@ ¢ cdn_riscv_config_pmp_region

core.tag hart1

g® switch_privilege_level

coretag hart1
rfrom_mode M_MODE
Ato_mode S_MODE

g w rite_data

core.tag hart1
out_buff

Ts smi_data_buff
Amem_seg.addr 0x96ad337¢

Amem_seg.block_tag mem0

=) cdn_psrlscv_reg_wrlte
coretag hart0

nselected_reg SATP64

g cdn_riscv_config_pmp_region

coretag hart0

o switch_privilege_level

core.tag hart0
Afrom_mode M_MODE
~to_mode S_MODE

B write_data

coretag hart0
out_buff

g sml_data_buff
~rmem_seg.addr 0x93146330

rmem_segblock_tag memO

Figure5: UML diagram of pmp_write_data_in_smodetestscenario

o cdn_psriscv_reg write [22] o cdn_psriscv_reg_write [24]
& cdn_coherency_ops_c ...fop.conerency ops €& cdn_coherency_ops_c ...fop.conerency ops
core.tag harti care.tag harto
Aselected_reg SATPG4 *selected reg SATPG4
g cdn_riscv_config_pmp_region [18] @ cdn_riscv_config_pmp_region [20]
¥ cdn_coherency _ops_c ...top.cohRerency_ops & cdn_coherenicy ops ¢ ...top.coherency_ops
core.tag hartl core.tag harto
2 switch_privilege_level [30] o switch_privilege_level [32]
£ cdn_coherency ops_¢ top.coherency ops T cdn_coherency_ops_c ...top.cohierency_ops
coretag hart1 core.tag hart0
write_data [26
4 smi_data_buff a VeI RS
£ sml_memory_ops_c pss_top.memory_ops
~mem_seg.addr 0x9068594¢ il 1.9F= iR K et
core.tag hart1
Amem_seg.block tag memQ =

Figure 6: UML diagram of pmp_write_data_in_smodetest scenario

Few observations on above scenario:

o Alegaltest is automatically generated due to PSS model constraints. In this case, only the
addresses that S-mode has pemmission to write are generated. The generated addresses
correspond to PMP table (Table 4) regions 6, 7,and 15 —all of which permit write accesses.
All the harts are tryingto trigger PMP checks concurrently during write accesses.

Another solution of the same PSS scenario (in Figure 4) would produce a slightly different
scenario:
o Thenumberofharts participating in the scenario is random
o Theaddresses generated for write accesses in S-maode is also random, which
means they targetdifferentPMP regions with different permissions.

We were able to create the first test scenario described above in a few minutes, usingatomic actions
developed in Step-1 and native PSS operators (like sequence, parallel etc.) provided by Perspec tool.

Creating a negativetestscenario: pmp_region_gaps_with_exception
e Onaselected hart, do the following:
o Installtrap handlersto handle exception due to PMP violations
Enable addresstranslationsin S-mode
Configure allPMP region basedon thePMP table (Table 4)
Switch privilege level from M to Smode (Table 1)
Do a write accessto a PMP region that has no write permission.

O O OO

Figure 7 shows PSS scenario descriptionand Figure 8 shows the UML diagram for the test scenario
pmp_write_data_with_exception

a install_mmode_trap_handler

Name coreitag hart1
+2 scenario[sequence]
+% a0: pmp_write_data_with_exception g © Install_smode_trap_handler
« %, d: do_on_proc core e -
< s:sequence

delegate_tra
install_mmode_trap_handler A RLEHESHL TN

install_smode_trap_handler
~® delegate_trap
[+ select_SATP

coretag hartl

g cdn_psriscv_reg_write

coretag hart1

cdn_riscv_config_pmp_region Aselected_reg SATP64
switch_privilege_level
wd: write data o) cdn_riscv_config_pmp_region

coretag hart1

@ switch_privilege_level

coretag hart1
Afrom_mode M_MODE
Ato_mode S_MODE

a wd: write_data

coretag hartl

outbutt

e smi_data_buff

g.addr 0x92a1ccb

block_tag mem0

Figure 7: pmp_write_data_with_exception testscenario
Figure 8: UML diagram of pmp_write_data with_exception testscenario

For negative tests, an exception is expected and that will be handled gracefully by the trap handler.
The test continues after the exception and executes till the end. The test is deemed a ‘pass’ only
when the expected exception happens after an operation (like memory access).

In this section, we have demonstrated how easily positive as well as negative test scenarios are
created by mixing PMP atomic actions, Perspec library actions and Perspec native operators. The
next sectiondescribes several other test scenarios developed in the same way.

Step-4: Create testvariations to cover concerning cross of PMP features

An exhaustive test plan for verifying PMP functionality in the SoC requires multiple tests targeting
various comer cases and negative conditions. The remainder of this section briefly describes several
otherscenarios we were able to createin a relatively shortamount of time.

pmp_region_overlap: Validate PMP privilege accesses with overlapping memory address regions
pmp_change_lock: Enable PMP lock bit to force privilege access checks evenin machine mode

v

g cdn_psriscv_reg_write

Aselected_reg SATP64

g* cdn_riscv_config_pmp_region

a w1: write_data

out_buff

(w smi_data_buff

Amem_seg.addr 0x90000000
Amem_seg.block_tag memo

a® cdn_psriscv_reg_write

Aselected_reg SATP64

g cdn_riscv_config_pmp_region

v
g® wi write_data

loutibuff

an smi_data_buff

0x908876aa

Amem_seg.block_tag mem0
In_baff

Amem_seg.addr

¥

o® set_pmp_region

AL FALSE

«
w2: write_data
puTQUTT

=]
in_buff
(@ sml_data_buff
Amem_seg.addr 0x908876aa
Amem_segblock_tag
v

set_pmp_region
TRUE

a
AL

g set.pmp_region
AL

a set_pmp_region
Al TRUE

TRUE

Figure 9 (left): UML diagramof pmp_region_overlap testscenario
Figure 10 (right): UML diagram of pmp_change_lock testscenario

For C code snippets, PSS canrandomizedifferentvalues defined in PMP Table 4 (ie: region type,
permissions, etc) based on differentPMP entriesto hit verification holes in comparison with direct

Ctest
setPMP(®, ((uint64_t)Ox1fffffff , Ox87); // Region ©, Start: 9x0, Size: 0x80000000, A:TOR,X:1,W:1,R:1
setPMP(1, ((uint64_t)Ox2007f77f), Ox87); // Region 1, Start: 0x80000000, Size: 0x200000, A:TOR,X:1,W:1,R:1
setPMP(2, ((uint64_t)Ox2403 f), Oxle); // Region 2, Start: 0x90000000, Size: 0x200000, A:NAPOT,X:1,W:1,R:0
setPMP(3, ((uint64_t)ex241f f), ©xle); // Region 3, Start: 0x90000000, Size: 0x1000000, A:NAPOT,X:1,W:1,R:0
setPMP(4, ((uint64_t)oOx2483), 0x19); // Region 4, Start: ©x92000000, Size: 0x200000, A:NAPOT,X:0,W:0,R:1
setPMP(5, ((uint64_t)ox249f f), @xb); // Region 5, Start: 0x92000000, Size: 0x800000, A:TOR,X:0,W:1,R:1
setPMP(6, ((uint64_t)Ox24c7T77f), OxT); // Region 6, Start: 0x93000000, Size: 0x200000, A:TOR,X:1,W:1,R:1
setPMP(7, ((uint64_t)eOx251F f), ©x8b); // Region 7, Start: 0x94000000, Size: 0x1000000, A:NAPOT,X:0,W:1,R:1
setPMP(8, ((uint64_t)ex24bf F), @th); // Region 8, Start: 0x92000000, Size: 0x1000000, A:TOR,X:0,W:0,R:1
setPMP(9, ((uint64_t)Ox255f f), Ox8T); // Region 9, Start: 0x95000000, Size: 0x800000, A:TOR,X:1,W:1,R:1
setPMP(10, ((uint64_t)ox258), Oxe); // Region 10, Start: 0x96000000, Size: 0x200000, A:TOR,X:1,W:1,R:0
setPMP(11, ((uint64_t)ex258), Oxlc); // Region 11, Start: ©x96200000, Size: ©x200000, A:NAPOT,X:1,W:0,R:0
setPMP(12, ((uint64_t)oOx259), ©x9d); // Region 12, Start: 0x96400000, Size: 0x200000, A:NAPOT,X:1,W:0,R:1
setPMP(13, ((uint64_t)0x759), ©x8c); // Region 13, Start: 0x96600000, Size: 0x200000, A:TOR,X:1,W:0,R:0
setPMP(14, ((uint64_t)@x25a), ©x9a); // Region 14, Start: 0x96800000, Size: 0x200000, A:NAPOT,X:0,W:1,R:0
setPMP(15, ((uint64_t)8x25abffff), ®x9e); // Region 15, Start: 0x96a00000, Size: 0x200000, A:NAPOT,X:1,W:1,R:0

Figure 11: Cfunctionsof setPMP regions

All above test scenarios have been successfully modeled and validated in just a few weeks once the
PSS model described in Step-3 is ready. We also successfully simulated the Perspec generated code
on a RISC-V reference platform.

CONCLUSION

This papershows howPSSand EDAtools, such as Perspec, enable efficient verification of complex
SoC level security scenarios. The main technical contributions are:

Out-of-box atomic actions and scenarios are ready to be used flexibly
Create large number of tests, coveringall crosses, in a relatively short amount of time.

o Modelbothpositive and negative security test scenarios with PSS.
RISC-V security verification approach focusingon PMP features.

REFERENCES
[1] Coherency Verification & Deadlock Detection Using Perspec/Portable Stimulus: https://dvcon-
proceedings.org/document/coherency-verification-deadlock-detection-using-perspec-portable-stimulus/
[2] Portable Test and Stimulus Standard Version 2.0:
https://www.accellera.org/downloads/standards/portable-stimulus
[3] RISC-V Privileged Spec: https:/github.com/riscv/riscv-isa-manual/releases/download/Priv-
v1.12/riscv-privileged-20211203.pdf
[4] Perspec System Verifier: https://www.cadence.com/zh_TW/home/tools/system-design-and-
verification/software-driven-verification/perspec-system-verifier.html

https://dvcon-proceedings.org/document/coherency-verification-deadlock-detection-using-perspec-portable-stimulus/
https://dvcon-proceedings.org/document/coherency-verification-deadlock-detection-using-perspec-portable-stimulus/
https://www.accellera.org/downloads/standards/portable-stimulus
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/software-driven-verification/perspec-system-verifier.html
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/software-driven-verification/perspec-system-verifier.html

