
Security Verification using Perspec/Portable Stimulus

Junxia Wang, Leven.Li, Siyan.Li - Mediatek

A T S Prasad, Kiran Kumar Palla, Yung Cheng Chen - Cadence



Agenda

• Why security verification?

• Requirements & Challenges

• Using Perspec and PSS to create reusable security verification 
scenarios



Trends & Risks

• Open access of automotive, mobile or data center to shared memory 
and resources by all agents in the system leaves security holes in the 
SoC design

One way to address 
security holes is by 

enforcing an 
‘accessibility’ policy for 

all shared resources

Mesh Network

Cluster 0
Core 
x 10

Interconnect

System Ram

Interrupt Controller

Interconnect

UART ROM Crypto

Interconnect

Boot Core Code RAM Data RAM

Interconnect

Power 
Manager

UART Timer



Agenda

• Why security verification?

• Challenges

• Using Perspec and PSS to create reusable security scenarios



Security Hardware Block - PMP 

• RISC-V architecture uses Physical Memory Protection Unit (PMP) [3] to 
enforce the ‘accessibility’ aspect of security :

• PMP hardware unit limits the physical addresses accessible by software 
programming

• PMP unit tackles the security aspect related to physical memory access 
privileges – read, write, execute permissions – in different execution modes



Overview of RISC-V PMP Specification

• There are three kinds of privilege 
modes in RISC-V environment

• PMP policies are checked for all 
accesses whose privilege mode is 
either S or U. 

• S or U mode accesses without 
proper permissions will trigger 
access fault exceptions

Level 
(Mode)

Name Abbreviation

0 User U

1 Supervisor S

3 Machine M

RISCV-64 Privilege Level (Mode) 



Overview of RISC-V PMP Specification

• A PMP unit supports dividing the physical address space into 
different regions with varying access permissions.

• Number of regions could be 0 (no PMP), 16 or 64 entries

• Achieved by configuring pmpcfg and pmpaddr registers for each 
region



Overview of RISC-V PMP Specification

• For RV32, 16 CSRs, pmpcfg0-pmpcfg15, 
hold the PMP configurations pmp0cfg-
pmp63cfg
• Example: PMP region-01 configuration is 

programmed in pmpcfg0.pmp1cfg field

• pmpaddr registers hold the address of the 
corresponding PMP region

• Each pmpNcfg field has permission bits
• Read, Write, Execute

• Address matching

• Lock bit



Overview of RISC-V PMP Specification

• With a combination of PMP configurations and address matching 
modes, lock bit, the PMP unit enhances security by supporting 
granular control of permissions across multiple physical memory 
regions

• The permissions can be dynamically re-programmed by each CPU 
core to enforce its own security policy on the shared system memory 
and resources



Challenges 

• Security verification is hard:
• PMP unit - a programmable hardware security block - allows multiple memory 

regions to be specified, each with its own privilege access policy per CPU core

• Complex due to large space of concerning crosses of PMP regions, multi-cores, 
access policies

• The complexity is amplified when Physical Memory Attributes (PMA)[3] - like 
Shareability, Cacheability, Exclusiveness - are thrown into the verification mix 

• Not easy to create tests and test infrastructure to verify negative security scenarios



Agenda

• Why security verification?

• Requirement & Challenge

• Using Perspec and PSS to create reusable security scenarios



Security Verification using Portable Stimulus

• Perspec and PSS simplified and shortened our verification tasks
• Basic memory operation actions are provided by Perspec libraries

• Building block Security actions are also provided

• Overall verification process
• Model compute subsystem

• Model PMP features

• Develop PMP security test scenarios

• Create test variations to cover concerning cross of PMP features



Model Compute Subsystem

• Processor Info Table

• Memory Info Table



Model PMP Features

• Physical Memory Protection (PMP) table- PMP entries in CSV tables

#region #start_pa #size #region_type
#region_permission

s

0 0x0000_0000 2G TOR L,R,W,X

1 0x8000_0000 2M TOR L,R,W,X

2 0x9000_0000 2M TOR, NA4, NAPOT W,X

3 0x9000_0000 16M TOR, NA4, NAPOT W,X

4 0x9200_0000 2M NAPOT R

5 0x9200_0000 8M TOR, NA4, NAPOT R,W

6 0x9300_0000 2M TOR, NA4, NAPOT R,W,X

7 0x9400_0000 16M TOR, NA4, NAPOT L,R,W

8 0x9200_0000 16M TOR, NA4, NAPOT L,R



Model PMP Features

• Physical Memory Attributes (PMA) table

• Atomic PMP actions
• Switch execution mode between M, S, and U modes

• Configure (program) PMP registers based on the 

configuration specified in PMP table

#va #pa #mem_block #size #shareability

0x9000_0000 0x9000_0000 mem0 128M shareable

0x9800_0000 0x9800_0000 mem1 32M shareable

0xA000_0000 0xA000_0000 mem2 32M shareable



Model PMP Features

• Atomic PMP actions
• Program RISC-V system register with specific value

• Configure (program) PMP registers based on the configuration specified in 
PMP table

• Write random data of specified size to a selected memory block

• Read and check (previously written) data from a selected memory block



Security Test - Scenarios/ Solution

• PMP Write Data in S(supervisor)-Mode
• Enable address translations in S-mode by 

Programming SATP (Supervisor Address Translation 

and Protection) register

• Configure PMP entries as defined in PMP table

• Switch privilege level from M to S mode

• Perform write access in S-mode 

pmp_write_data_in_smode test scenario

PSS Scenarios

Solution



Security Test – Scenarios/ Solution

• PMP Write Data With Exception
• Install trap handlers to handle exception due to PMP violations

• Enable address translations in S-mode

• Configure all PMP region based on the PMP table

• Switch privilege level from M to S mode

• Do a write access to a PMP region that has 

no write permission.

pmp_write_data_in_smode test scenario

PSS Scenarios Solution



Security Test – Scenarios/ Solution

• PMP Region Overlap
• Validate PMP privilege accesses with overlapping memory 

address regions (solution 1)

• PMP Change Lock
• Enable PMP lock bit to force privilege access

checks even in machine mode (solution 2)

pmp_write_data_in_smode test scenario

Solution 1 Solution 2



Conclusions

• Writing security scenarios using Perspec enables efficient 
verification of complex SoC level security scenarios
• Out-of-box atomic actions and scenarios are ready to be used flexibly

• Create large number of tests, covering all crosses, in a relatively short 
amount of time.

• Model both positive and negative security test scenarios with PSS

• RISC-V security verification approach focusing on PMP features


