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Abstract- During fault injection simulations, injected faults can be detected by the Safety Mechanism (SM) and/or can 

be observed to impact design functionality. Diagnostic Coverage (DC) serves as a key measure to assess the effectiveness 

of the SM. While achieving the target DC is the ultimate objective, ensuring this is accomplished with a high degree of 
confidence is essential. Unclassified faults—those that are Unobserved functionally and Undetected by SM (UU)—must be 
carefully analyzed and reclassified to confidently finalize the achieved DC. This paper presents simulation-based Fault 

Barrier Analysis as an innovative approach, emphasizing its advantages over conventional formal methods in specific 
design contexts. It addresses the challenges faced in formal-based UU analysis. It also offers a comprehensive analysis 
contrasting formal methods with simulation techniques. The results provided from both the methods offer valuable 

insights to help users select the most suitable methodology for UU fault analysis based on their design needs. Following 
the saturation of formal-based analysis, a simulation-based approach is currently being implemented in project 2, where 
it is yielding promising results. 

I. INTRODUCTION 

Functional Safety (FuSa) ensures that a system operates correctly in response to its inputs and safely handles 

potential failures to prevent risks or hazards. ISO 26262 is the recognized standard for Functional Safety in 

automotive Electrical and Electronic Systems. It offers a FuSa development process for the entire automotive supply 

chain. It also provides an automotive-specific approach for determining risk classes known as Automotive Safety 

Integrity Levels (ASILs) as shown in fig. 1. 

ASIL assessment is based on three parameters:  

• Severity - Potential severity of harm  

• Exposure - Potential exposure to the operational situation   

• Controllability - Potential for controllability to avoid harm                          
 

     
 

    Figure 1. ASIL assessment 

 

ISO 26262 recommends fault injection as a method for  

• Supporting the evaluation of the hardware architectural metrics. 

o Evaluating the DC of a Safety Mechanism  

o Evaluating the diagnostic time interval and the fault reaction time interval 

o Confirming the fault effect 

• Supporting pre-silicon verification of an SM, including its ability to detect faults and manage their effects  

The Failure Modes Effects and Diagnostic Analysis (FMEDA) verification flow, shown in fig.2 starts from the 

FMEDA document with estimated DC and terminates with the annotation of the verified DC back into the FMEDA. 

Unclassified faults block the DC sign-off even when the target DC is met, as the confidence in such DC is low. 
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Figure 2. FMEDA Verification Flow 

 

FMEDA is a systematic analysis technique in which the FuSa design is represented as part, sub-part, and 

elementary sub-part and their respective estimated DC and Single Point Fault Metric (SPFM) are determined. This 

forms the basis for the fault campaigns as shown in fig. 3. 

 

 
 

Figure 3. Planning fault campaigns from FMEDA 

 

During a fault injection campaign, faults are classified based on their impact and detection. If a fault affects the 

functional outputs (FO), it is deemed dangerous. If it is detected on the checker outputs (CO), it is marked as 

detected. Faults that do not affect either output are labeled as unobserved or undetected. Consequently, faults are 

categorized as Safe (S), Dangerous Detected (DD), Dangerous Undetected (DU), Unobserved Undetected (UU), and 

Unobserved Detected (UD). Diagnostic Coverage (DC) is determined by analyzing DD and DU faults, while SPFM 

and Latent Fault Metric (LFM) calculations incorporate S, DD, and DU faults, as shown in fig. 4,  
 



 
 

Figure 4. Fault categorization matrix 

 

A safe fault is one that lies structurally outside the Cone-of-Influence (COI) of the functional outputs (FO) or is 

unactivatable and/or unpropagatable. Faults whose effects are not observed on the FO are termed as unclassified, 

which forms the central focus of this paper. It is both noteworthy and concerning that a significant portion of the 

fault nodes often remain unclassified in initial fault injection campaigns, a phenomenon that is routinely observed 

across the industry. 

II. DESCRIPTION 

Fault Injection simulations on a design yields fault classifications, including UU faults. Primary causes of UU 

fault are Insufficient stimulus/workload [1], structurally Out of COI (OOCOI) of the FO, structurally in and 

functionally out of COI of the FO as shown in fig. 5,  

 

 

 
 

Figure 5. Cone of Influence of FO 

 

A. Formal Analysis 

Solutions include employing formal tools to filter out faults that are structurally out of COI of the FO [1] and 

classify them as safe. Additionally, applying constraints to exclude non-safety-critical modules, such as scan logic, 

can further enhance the safe fault count. Ensuring that the DV test suite used for fault campaigns achieves 100% 

functional coverage is another, albeit labor-intensive, solution. A key innovation in leveraging formal methods is the 

identification of stimuli capable of propagating UU faults to the FO. This is accomplished through propagatability 

and detectability analysis of UU faults [1]. The resulting stimuli traces can then be used to develop tests that classify 

UU faults within the simulation environment. These various formal solutions will aid in categorizing UU faults 

arising from diverse underlying causes.  

Let us understand precisely how each of these causes could be addressed with above mentioned formal solutions. 

Table 1 shows different reasons for unclassified faults and their respective solutions [2]  

 
 

 



TABLE 1 
UU CAUSES AND THEIR FORMAL SOLUTIONS 

Reason for a fault to be unclassified Various solutions for each reason of unclassified fault 

Insufficient stimulus/workload  • Use Test-Constant analysis – This will identify all the test-based constants 

• Identify the modules/sub-modules with more unclassified faults and create the 

stimulus/tests to activate that module/sub-module 

• Create an RTL regression suite to check the fault injection tests have relevant 

functional and code coverage. 

• Use formal propagatability and detectability analysis to identify the input port 

values that can stimulate a particular node and create simulation test(s). 

Structurally OOCOI of the FO  • Use formal structural analysis to identify structurally safe faults 

Structurally ICOI and functionally OOCOI of 

the FO 
• Provide basic ‘assume’ in the structural analysis to identify functionally safe 

faults. 

• Further, improve the ‘assumes’ based on the design understanding to improve the 

safe fault result. 

• Based on the expert understanding of the design add stopats/barriers to exploit 

unactivatable and unpropagatable nodes and classify them as safe. 

 

The following table 2 consolidates various solutions for UU analysis, the level of understanding of design and 

formal concepts needed and the overall impact [2] 
 

TABLE 2 

FORMAL SOLUTIONS AND THEIR IMPACT 

Technique Design 
Understanding 

Formal 
Understanding 

Impact 

Constraint design inputs (assume) Basic Basic Targets all functionally safe nodes 

Forcing internal nodes (stopats / barrier) Expert Medium Targets unactivatable and unpropagatable nodes 

Test based fault pruning Basic Basic Test-based constants and marked as UU 

Identifying stimuli Expert Expert Targets difficult-to-activate type of faults 

 

It is a well-recognized challenge within the industry that formal analysis methods can encounter convergence 

issues, which often require substantial manual effort to address. The one of the mentioned formal analyses of 

identifying stimulus with propagatability and detectability analysis is no exception, where it was proven that 

increasing resources—such as licenses, time, and computational power—could accelerate convergence in digital 

heavy designs and block level analysis as shown in results. However, even with extensive resource allocation, full 

convergence was not achieved in high sequential depth and mixed signal designs. Due to the inherent limitations of 

formal tools, the process faced significant delays and various challenges, resulting in a prolonged execution time. 

Consequently, the Return On Investment (ROI) was not satisfactory. This prompted an exploration of alternative 

methods to address UU faults, leading to the development and discovery of the Fault Barrier Analysis method. 

B. Fault Barrier Analysis 

   Understanding the factors that prevent fault propagation to the FO led to the identification of chokepoints or 

barriers in fault propagation. A fault barrier is defined as the first design signal where fault propagation ceases as 

shown in fig. 6. 

 

 
 

Figure 6. Fault Barriers in the design 
 

Identifying these barriers is crucial for introducing design constraints or creating stimuli to either disable the 

barrier or enable fault propagation. In barrier analysis, barriers are ranked in descending order based on their 

contribution to fault non-propagation, from those causing the highest to the lowest number of UU faults. This 

ranking facilitates the prioritization of efforts in creating constraints or stimuli for the most significant barriers. This 



simulation-based analysis requires no additional setup, as it leverages existing fault simulation runs to identify fault 

barriers, thereby minimizing setup time. Upon completion of the simulation, the tool generates a list of faults and 

their corresponding chokepoints, outputting one barrier database file per test run. This data can significantly aid in 

addressing a large volume of UU faults by identifying design areas responsible for fault non-propagation and non-

detection.  

The generated barrier to fault mapping file contains the information such as barrier ID, barrier node, fanin 

strength, impacted fault(s) ID’s as shown in fig. 7, 
 

 
 

Figure 7. Snippet of barriers.csv (barrier to fault relation) on an example design 

 

   The generated fault to barrier mapping file contains the information such as fault ID, fault node, fault type, fault 

injection time, fanout strength, barrier ID’s as shown in fig. 8, 

 

 
 

Figure 8. Snippet of faults.csv (fault to barrier relation) on an example design 

 

Snippets from actual project are not shared because of project confidentiality. In the following section, results are 

shared from the actual projects. 

III. RESULTS AND TAKE-AWAYS 

   Table 3 below presents project details, including gate and flip-flop counts, to illustrate the design scale and 

complexities for formal method across various projects for unclassified fault analysis. These insights were gathered 

to ensure a comprehensive understanding of the diverse design types evaluated prior to forming a detailed 

recommendation. 

 
TABLE 3 

    PROJECT DETAILS 

S. No Parameter Project 1 Project 2 Project 3 Project 4 

Block 1 Block 2 

1 Design Type Digital Digital Mixed Signal  Mixed Signal Mixed Signal 

2 Gate count 76125 4571 616621 24784 16074 

3 FF count 1125 82 14816 1398 956 

4 Complexity High sequential 
depth 

None Non- 
synthesizable 

models 

Counters Real Number 
Models 

    

   Fig. 9, demonstrates that increased resource allocation led to less convergence time i.e., reduction of 85% and 50% 

in block 1 and block 2 respectively for project 1. Fig. 10, shows that this increase in resource also led to more 

convergence i.e., less unknown faults in block 1 and block 2 of project 1 which is a digitally intensive design.  

 



      
 

Figure 9. Convergence time in Project 1            Figure 10. Propagatability analysis in Project 1 Block 1 and 2 

 

However, fig. 11, reveals that, despite high resource usage, a significant portion of faults remained unclassified in 

formal-based analysis in project 2, 3 and 4.  

 

 
 

Figure 11. Propagatabaility analysis in Project 2, Project 3 and Project 4 respectively 

   

Fig. 12, illustrates the timeline of challenges encountered across project 2, 3 and 4 when applying formal methods 

in mixed-signal designs. In fig. 12, the bubble size represents the severity of each issue, while the solid line denotes 

the resolution time for each. Combinational loops emerged as the most critical issue across all projects, requiring 

substantial time to resolve, which had a significant impact on the overall project timeline. After the resolution of 

combinational loops, another major challenge arose—convergence issues, which remain unresolved to this day. 

Where formal methods proved insufficient in such mixed signal projects, simulation-based fault barrier analysis was 

introduced. The final presentation will present the comparative analysis of results between formal and simulation 

methods. 

 
 

Figure 12. Challaenges faced in Projects 2, 3, 4 in Formal-based analysis 
 

One of the challenges encountered in barrier analysis is that, after barriers are initially identified and removed, 

certain faults persist as UU, with new barriers emerging in the propagation path. This necessitates an iterative 

process of identifying and eliminating fault barriers to progressively reduce the UU fault count.  

Note:  

 

Size of the bubble α 

Severity of the issue 

 

Solid line == Issue 

resolution time 



Fig. 13, presents the outcomes of the fault barrier analysis, highlighting that certain barrier nodes were analysed to 

result in safe faults, while others remained inconclusive, requiring further investigation to determine their 

classification. 

 
 

Figure 13. Results of fault barrier analysis in Project 2 

 

Table 4 presents the fault barrier analysis statistics for Project 2. Despite the extensive number of nodes analyzed, 

66.67% remained unprocessed. To address the challenges associated with iterative process inherent in the simulation 

method as mentioned above, an alternative approach was adopted for this particular project as an experiment—

analyzing all barrier nodes at once instead of incrementally processing subsets and rerunning simulations. That 

being said, this approach posed to be cumbersome, requiring considerable time and manpower. 

 
TABLE 4 

SIMULATION METHOD STATISTICS IN PROJECT 2 

S. No Category Sub-Category Value Percentage Sub-category Value Percentage 

1  Barrier Nodes Analyzed  10500 9% Safe 2460 17% 

Undetermined 540 83% 

Unanalyzed 109500 91% Unprocessed 6000 66.67% 

2 Total number of 
barrier nodes 

 120000 100% Total Fault Nodes 9000 100% 

 

However, most of the barrier nodes exhibited similar characteristics, effectively alleviating the issue. These nodes 

of a comparable type can be categorized, allowing for a detailed analysis of a select subset within a specific 

category, while the remaining nodes can be designated as reviewed to facilitate fault classification. 

By utilizing the barrier-to-fault relation and fault-to-barrier relation mapping as shown in fig.7 and fig. 8 

respectively, the nodes that are directly mapped in a one-to-one fashion between barriers and faults are analyzed first 

to immediately determine the fault classification. In the case of Project 2, a substantial number of barriers are 

attributed to DFT logic, and the corresponding faults can be classified as safe through expert judgment. However, 

the remaining faults, following the removal of the barrier, must undergo simulation to establish the final 

classification. Further analysis is being conducted on Projects 3 and 4 to develop a streamlined process that can be 

applied to any project. This approach aims to minimize the iterative nature of fault barrier analysis, ultimately 

enhancing efficiency. 

   A key takeaway from this analysis in project 2 is that the simulation method limits debuggability and does not 

support reactive, co-simulation, or GLS SDF annotation testbenches. Both formal and barrier analysis have their 

respective advantages and limitations. To leverage the strengths of both approaches, based on various experiments 

conducted in the production design, it is recommended to apply formal analysis to modules with lower sequential 

depth for faster results, while using barrier analysis for the other modules. Comparative results on UU faults will be 

presented in the final presentation. 

   Below table 5 shows the comparison between formal and simulation methods which highlights distinct strengths 

and limitations for each approach. Formal methods are particularly well-suited for digital-heavy designs, typically 

applied at the block level, though they demand significant computational resources and often encounter convergence 

issues. On the other hand, simulation methods excel in mixed-signal environments, are more commonly used at the 

chip-top level, and require moderate resources. However, they follow an iterative process, which can prolong the 

analysis. This contrast underscores the need to select the appropriate method based on the design type and available 

resources, balancing efficiency with complexity. 
  

 



 
TABLE 5 

FORMAL VS SIMULATION METHODS 

S. No Parameters Formal Method Simulation Method 

1 Design Type Digital Heavy Mixed Signal 

2 Hierarchy Block Level Chip Top 

3 Resource Intensive Moderate 

4 Drawbacks Convergence Issues Iterative Process 

IV. CONCLUSION 

A universal solution is rarely effective in complex verification scenarios. This paper examines the inherent 

limitations of formal methods and demonstrates how simulation-based fault barrier analysis effectively mitigates 

unclassified (UU) faults when formal techniques reach their boundaries. By selecting the optimal approach aligned 

with specific design requirements, significant time savings can be achieved. Additionally, combining both methods, 

where applicable, enhances confidence in Diagnostic Coverage (DC) during fault injection campaigns in Functional 

Safety (FuSa) designs. 
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