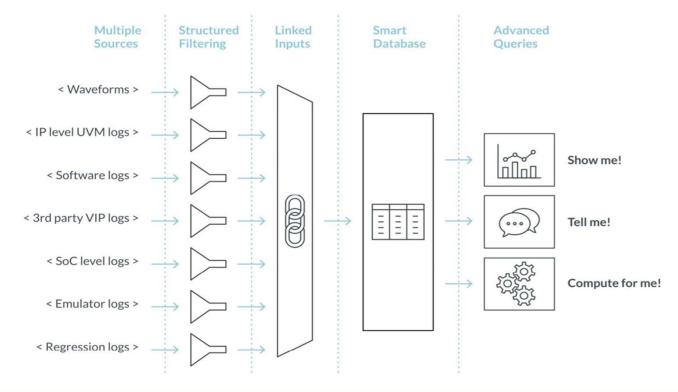


SAN JOSE, CA, USA MARCH 4-7, 2024

Efficient application of AI algorithms for large-scale verification environments based on NoC architecture

Anna Ravitzki, Olivera Stojanovic, Nemanja Mitrovic

info@thevtool.com thevtool.com



Objectives

- Improve standard verification techniques
- Address key challenges in large-scale verification environments
- Understand verification outcome as one big-data dataset
- Explore areas where AI/ML are applicable for verification
- Introduce a novel approach: AI on unified big-data datasets from multiple sources

Al-driven verification flow

Typical NoC verification challenges

- 1. Unexpected transactions, for
 - Matching source and destination endpoints in failing transfers
 - Resolving common failures
 - Interleaving burst translations
- 2. Error response transactions, for reserved and/or broken address ranges
- 3. Distribution of transaction, for qualifying test and verification environment
- 4. Utilization of outstanding transactions, for improved performance
- 5. Detection of repetitive transaction patterns irregularity, for measuring throughput and detection of transfer timeouts

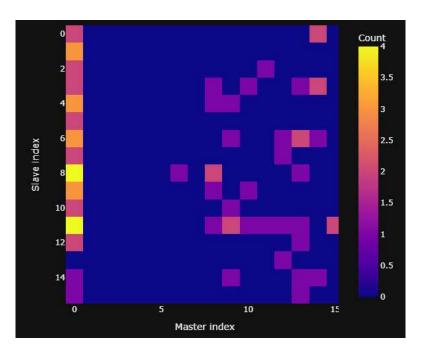
DESIGN AND VE CONFERENCE AND EXHIBITION

UNITED STATES

SAN JOSE, CA, USA MARCH 4-7, 2024

Efficient test generation and distribution

SYSTEMS INITIATIVE



Transaction distribution

Issues

- Test quality
- Constraint issues
- Even distribution

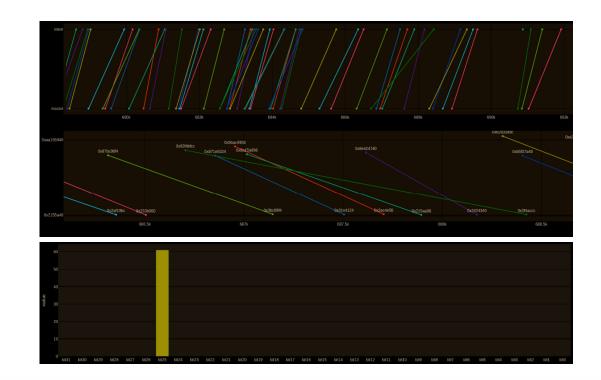
- Understand test scenarios before implementing functional coverage
- Cover test scenarios, faster
- Shorter regression time

CONFERENCE AND EXHIBITION

UNITED STATES

SAN JOSE, CA, USA MARCH 4-7, 2024

Faster verification and debugging


SYSTEMS INITIATIVE

Handling unexpected transactions

Issues

- Unexpected transactions
- Test gets stuck
- Common failures

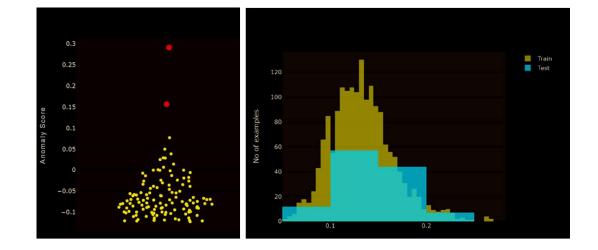
- Detect exact origin of failed transactions
- Address correlation algorithm
- Find common values in every failing transaction

Detecting irregularity in repetitive transaction patterns

Issues

- HW/SW co-verification
- Multiple sources: Tarmac, UVM logs, waveforms, disassembly

- Detecting unexpected branches in SW
- Unexpected interrupt
- Drops in efficiency
- Anomaly in transaction duration



Neural network model training and deployment

Issues

- Incremental learning as project progresses
- Training on specific ENV, transactions, and interface
- Bugs not revealed by checkers

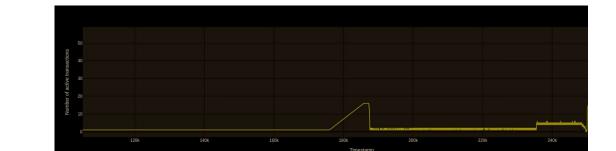
- Verification-tailored models
- Auto-anomaly detection
- Checker validation

CONFERENCE AND EXHIBITION

UNITED STATES

SAN JOSE, CA, USA MARCH 4-7, 2024

Performance, throughputs, and bottlenecks


SYSTEMS INITIATIVE

Outstanding transactions utilization

Issues

- Interface utilizations
- Throughput and performance
- HW/SW profiling

- Find bottlenecks
- Improve test scenarios
- Maximize outstanding transactions

Achievements of our Al-driven approach

Features

- Automated multi-dimensional anomaly detection
 - Timing: Consider duration of transactions and gaps between transactions
 - Values: Set of data fields
- Chat GPT: Ask questions on unified database
- Comparison of passing and failing tests
- Address distance

- Bug detection
- Quality of test: Distribution
- Utilization (number of outstanding transactions)
- Performance (duration of transaction and gaps between transactions)
- Detect bottlenecks in the system

Conclusion

New mindset. Simulation as one big-data dataset

New top-down approach. Transform standard verification from bottom-up to macro-level process

Al-driven. Effective test generation and distribution

Speed and ease. Faster verification and debugging

Utilization. Optimize performance, thruputs, and bottlenecks

Beyond thinking. Amplify engineers' capacity for capturing SW irregularities and unused bandwidths across interconnected transmission

Limitless potential. Alleviate verification workloads with AI/ML

Thank you

