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Abstract- Interface classes introduced multiple inheritance to System Verilog in 2012. With that a class isn't tied only to 

it’s base class but can also inherit properties from other classes. Users prior to 2012 had to work their way around as the 
language did not have Interface classes, which includes the code for current Transaction Level Modeling (TLM) 
specification in the Universal Verification Methodology (UVM). It lacks compile-time checks for port and interface 
compatibility and missing implementations. Additionally, it leaks APIs between different interfaces, allowing nonsensical 
and illegal method calls that are only detectable at run-time. With the introduction of Interface classes in SystemVerilog 
2012, we can rethink UVM TLM such that illegal and nonsensical behavior can be detected at compile-time, reducing the 
latency for the user to address these errors. 

 
I.   INTRODUCTION 

TLM ports and interfaces are an integral part of any testbench. Unfortunately, the current definition within the UVM 
Standard [1] is a weak imitation of SystemC’s TLM [2]. The two implementations diverge significantly due to 
limitations in SystemVerilog 2009 [3]. As a result, UVM is functional but cannot check for common errors at compile-
time and introduces nonsensical errors that are only detectable during run-time. For example, trying to call the 
connect method on an imp, peek on an analysis port, or connecting an export to a port.  

In this paper, we explore using Interface classes to redefine UVM TLM; offering compile-time checks for port 
connectivity, interface compatibility, and incomplete interface implementation while preventing interface APIs from 
leaking into one another. While the design patterns used in this paper are applicable across both TLM 1 and 2, a 
redefinition of UVM TLM 2 is not included. 

 
 

II.   INTERFACES AND PORTS 
  TLM enables transaction-level communication between entities using two concepts: Interfaces and Ports. Interfaces 
provide the ability to specify API requirements without relying on inheritance. Consumers of an interface interact with 
implementors of the interface without knowing specific type information about the implementor. All the consumer 
knows is that the implementor implements the interface. 
  Alternatively, ports, exports, and imps control consumer-to-implementor connectivity through a hierarchical 
testbench. A port declares that a component requires an implementation of a specific interface, an export declares that 
the component forwards an implementation, and an imp declares that the component provides the implementation.  
 

 
Figure 1. Ports, Exports and Imps 

 
SystemC’s TLM [2] has only ports and exports. There are no imps. UVM had to introduce imps because of the lack 
of single inheritance and method overloading in SystemVerilog 2009 [3]. UVM had to separate the two constructs, 
one forwarding the implementation, the export and the other providing the implementation, the imps. 
 
 



III. THE UVM TLM IMPLEMENTATION 
A. Port base class  

The UVM TLM implementation defines the common base class for all ports, exports and imp types as:  
 

uvm_port_base #(type IF = uvm_void) extends IF; 
 

As all port, export, and imp types use this base class, their common connect method can use the 
uvm_port_base#(T) type for its argument. This ensures connect-compatibility between ports, exports, and imps. 
Unfortunately, this also means that some methods always exist, even if they are illegal for a particular derivation type. 
For example, a user can call the connect method on an imp, only to fail later at run-time. This failure is because 
imps don’t connect to anything; their actual implementation is defined during their construction. At run-time, the 
connect method checks for the type of uvm_port_base#(IF) instance, and if it is of type imp, it fails.  

Even if calling the connect method is legal, it may have an incompatible port type as an argument. For example, 
if the connect method is called on an export type, with an argument of port type, we will see yet another run-time 
failure.  

 
B. Interface base class 

The IF type parameter used in uvm_port_base#(IF) is derived from the uvm_tlm_if_base base class for 
all TLM ports. 

uvm_tlm_if_base #(type T1 = int, type T2 = int) 
 
This base class lists all the methods needed for all types of TLM interfaces. While we’re omitting the complete list 

for brevity, this means that every UVM analysis port contains 11 TLM APIs that are completely nonsensical, such as 
can_put. There is no actual implementation of these methods in the base class, and they are not declared pure 
virtual.  

It is also possible to connect incompatible interfaces because of this common base class. For example, a 
uvm_tlm_get_port can be connected to a  uvm_analysis_imp.  
 

 
IV. DESIGN PATTERNS 

The following design patterns allow us to create a new implementation of TLM for UVM without falling into traps 
described in the previous section. 
 
A. The Curiously Recurring Template Pattern  

The Curiously Recurring Template Pattern [4], or “CRTP,” is a design pattern wherein a class extends from one 
of its parameters, for example: 
 
class Baz #(type T) 
  extends T; 
endclass 
 

 In the example, the class Baz takes a parameter T, which it then extends, thus making its inheritance “curiously” 
recursive. As the base class is a parameter, each declaration of the Baz class may derive from a different base class: 
 
class Base_Foo; 
endclass 
 
class Base_Bar; 
endclass 
 
Baz #(Base_Foo) Foo_ext; 
Baz #(Base_Bar) Bar_ext; 
 

In the example above, both Foo_ext and Bar_ext  are derivations of Baz, but each derivation is derived from 
a different base class. Foo_ext derives from Baz#(Base_Foo), which in turn derives from Base_Foo, and 



Bar_ext derives from Baz#(Base_Bar), which in turn derives from Base_Bar. Foo_ext and Bar_ext 
do not share a common base and are not cast-compatible with each other. 

The CRTP should look familiar, as it is the pattern used by the uvm_port_base#(IF) class described in the 
previous section. This lack of a common base class between disparate uvm_port_base#(IF) declarations is the 
root cause of many of the sacrifices made in the original UVM TLM implementation. However, the CRTP can still be 
a handy tool when combined with additional patterns. 

B. Interface Classes 
SystemVerilog introduced Interface classes in 2012 [5]. Interface classes are similar to abstract classes in that they 

specify method prototypes without providing an implementation. Unlike abstract classes, all methods within an 
Interface class must be declared pure virtual. Additionally, Interface classes are not a part of standard class 
inheritance. They do not have a constructor, and no member variables or static methods are allowed.  

Instead of extending an Interface class, a class implements an Interface class. The following example from 
SystemVerilog 2012 LRM demonstrates the use of Interface classes. 

 
interface class PutImp#(type PUT_T = logic);  
   pure virtual function void put(PUT_T a);  
endclass  
 
interface class GetImp#(type GET_T = logic);  
   pure virtual function GET_T get();  
endclass 
 
class Fifo#(type T = logic, int DEPTH=1) implements PutImp#(T), GetImp#(T); 
  T myFifo [$:DEPTH-1];  
  virtual function void put(T a);  
    myFifo.push_back(a);  
  endfunction  
  virtual function T get();  
    get = myFifo.pop_front();  
  endfunction  
endclass 
 
class Stack#(type T = logic, int DEPTH=1) implements PutImp#(T), GetImp(T); 
  T myFifo [$:DEPTH-1];  
  virtual function void put(T a); 
    myFifo.push_front(a);  
  endfunction  
  virtual function T get();  
    get = myFifo.pop_front();  
  endfunction  
endclass 
 
The implementing class must implement every method in the Interface class, including re-declaring pure 

virtual prototypes in abstract implementation classes. For instance, in the example above, the class Stack 
implements Interface class PutImp #(T). If the user missed the definition of function put(), it would result in a 
failure during compile-time. We use this feature to help us detect missing definitions in the next section. 

An Interface class establishes the protocol for how classes can declare various methods. The classes implementing 
this Interface class can define the methods in their own unique way. A class is allowed to implement multiple Interface 
classes, thus allowing for something like multiple inheritance. As with non-Interface classes, Interface classes support 
both type and value parameters.   

C. The Mixin Pattern 
The mixin pattern uses a combination of Interface classes and CRTP to provide multiple inheritance in System 

Verilog. It provides a default implementation of an interface and extends from a class that is a type parameter for the 
mixin class. The name “mixin” comes from how the class “mixes” the interface “into” the base class. In this way, two 
classes derived from the mixin class implement the same interface but may be derived from different base classes.  



For instance, in the example below, FooBar and FooBaz implement FooIntf, even though they derive from 
different base classes: 

 
class FooMixin#(type T) 
  extends T  
  implements FooIntf; 
endclass 
 
typedef FooMixin#(Bar) FooBar; 
typedef FooMixin#(Baz) FooBaz;  

 
A mixin class can also be used as the “base” parameter for other mixin classes. In the example below, class 

MyMegaClass is an extension of MegaMixin,  which in turn extends FooMixin, which then extends BarMixin, 
which finally extends Base. As such, MyMegaClass contains all the properties of these classes.  

 
class MyMegaClass  
  extends MegaMixin#( 
            FooMixin#(  
              BarMixin#( Base ) 
                      ) 
                     ); 
  ... 
endclass 
 
 

V.   NEW IMPLEMENTATION 
As Interface classes allow type parameters and multiple inheritance, we use them to define ports and interfaces with 

the benefit of adding compile-time checks. Our new implementation uses Interface classes extensively in both the port 
and interface types, providing compile-time checks for missing methods, and both port and interface compatibility.  

The new implementation uses the prefix xvm_ instead of uvm_. This prefix allows it to coexist with the current 
UVM definitions and avoids confusion caused by similar naming patterns. 

 
A. Use of Interface classes for interfaces 

The new implementation uses different Interface classes for each interface instead of a singular 
uvm_tlm_if_base class. The following is an example of the get interface type, which extends both the blocking 
and non-blocking get interface types. 
 
interface class xvm_tlm_nonblocking_get_if#(type T1=int); 
   pure virtual function bit try_get(output T1 t); 
   pure virtual function bit can_get(T1 t);  
endclass : xvm_tlm_nonblocking_get_if 
 
interface class xvm_tlm_blocking_get_if#(type T1=int); 
   pure virtual task get(output T1 t); 
endclass : xvm_tlm_blocking_get_if 
  
interface class xvm_tlm_get_if#(type T1=int)  
  extends xvm_tlm_nonblocking_get_if#(T1),  
          xvm_tlm_blocking_get_if#(T1); 
endclass : xvm_tlm_get_if 
 
All new XVM TLM ports use Interface classes like these in their declaration. The pure virtual guarantee a 

compile-time failure for any missing definitions in the classes implementing these interfaces. For example, if the user 
forgets to define the put() method in their class which extends xvm_blocking_put_imp, they are going to get 
a compile-time error.  

  



B. Port specific base classes 
The new implementation uses separate base classes for ports, exports and imps. We can eliminate methods and 

variables not needed in the specific types. They do share a common base class; however, it does not contain any 
functionality that doesn’t apply across all three types. As all the classes do not have all the methods, calling an illegal 
method will fail at compile-time. For example, the xvm_imp class does not have a connect method. Hence, calling 
a connect method on an xvm_imp instance will result in a compile-time failure.  

Note that the new implementation does not strictly require a corollary to imps in UVM. Using Interface classes, 
providing xvm_port and xvm_export would be sufficient. However, we continue to maintain an xvm_imp type 
to provide backward compatibility.  

 

 
Figure 2. Class hierarchy for port classes 

 
 

C. Use of Interface classes for connectivity checks  
We provide two additional Interface classes port connectivity checks: xvm_port_check_if and 

xvm_export_check_if. Each extension of port, export and imp must implement one of these two classes.  
 
interface class xvm_port_check_if#(type IF);  
endclass: xvm_port_check_if 
 
interface class xvm_export_check_if#(type IF)  
  extends xvm_port_check_if#(IF);  
endclass: xvm_export_check_if 
 
Note that the Interface class xvm_export_check_if extends xvm_port_check_if. This may seem 

backwards since ports can connect to everything whereas exports can only connect to exports and imps. The reasoning 
for this definition is that the connect method uses one of these Interface classes as the argument type.  

The connect method in the xvm_port_derived is declared as: 
 
virtual function void connect (xvm_port_check_if#(IF) provider); 
  ... 
endfunction 
 
Whereas the connect method in xvm_export_derived is declared as: 
 
virtual function void connect (xvm_export_check_if#(IF) provider); 
  ... 
endfunction 
 
All exports and imps implement the xvm_export_check_if Interface class, and all ports implement 

xvm_port_check_if class. An xvm_export_check_if is cast-compatible with xvm_port_check_if as 
it extends that Interface class. Hence the xvm_port_check_if argument for the xvm_port connect method 
will accept all ports, exports, and imps. On the other hand, an xvm_export will only accept export and imps as 
arguments to its connect method. This allows for a compile-time compatibility check between different TLM port 
types. 

 
D. Declaration of TLM ports using Interface classes 

Below is an excerpt from the definition of the get export class: 
 



class xvm_get_export #(type T=int)  
  extends xvm_export #(xvm_tlm_get_if #(T)) 
  implements xvm_export_check_if #(xvm_tlm_get_if #(T)), 
             xvm_tlm_get_if #(T); 
   ... 
endclass  
 
As you can see the class definitions get very verbose because of the implementation of multiple Interface classes. 

This is where the mixin pattern can be used once again to prevent code duplication. We declare mixin classes 
separately and use those mixin classes to have a more readable definition of TLM ports. 
   Such a mixin class is show below: 
  
virtual class xvm_get_export_pure_mixin #(type T=int, type BASE=int) 
   extends xvm_blocking_get_export_pure_mixin #(T, 
          xvm_nonblocking_get_export_pure_mixin #(T, BASE)) 
   implements xvm_tlm_get_if #(T), 
              xvm_export_check_if #(xvm_tlm_get_if #(T)); 
   ... 
endclass // xvm_get_export_pure_mixin 
 
This “pure” mixin class does not provide any concrete implementation for the get interface, instead it declares all 

of the methods as pure virtual. This allows the export, and imp classes associated with the get interface to share 
a single mixin instead of constantly re-declaring all of the interfaces that they implement. A similar mixin class can 
be declared for the ports. 

The final declaration of a TLM Port and interface looks like the following with the use of this mixin class: 
 
 
class xvm_get_export #(type T=int)  
 extends xvm_get_export_pure_mixin#(T, xvm_export #(xvm_tlm_get_if #(T)));  
   ... 
endclass 
 
class xvm_get_imp #(type T=int)  
 extends xvm_get_export_pure_mixin#(T, xvm_imp #(xvm_tlm_get_if #(T)));  
   ... 
endclass 
 
 
These “pure” mixin classes can also be used to recursively to reduce the verbosity of other TLM Ports. For 

example: 
 
virtual class xvm_get_peek_export_pure_mixin #(type T=int, type BASE=int) 
   extends xvm_peek_export_pure_mixin #(T, 
             xvm_get_export_pure_mixin #(T,  
               xvm_blocking_get_peek_export_pure_mixin #(T,  
                 xvm_nonblocking_get_peek_export_pure_mixin #(T, BASE) 
               ) 
             ) 
           ) 
   implements xvm_tlm_get_peek_if #(T), 
              xvm_export_check_if #(xvm_tlm_get_if #(T)), 
              xvm_export_check_if #(xvm_tlm_peek_if #(T)), 
              xvm_export_check_if #(xvm_tlm_get_peek_if #(T)); 
     … 
endclass // xvm_get_peek_export_pure_mixin 
 



 
E. Examples of compile-time checks 

The following example user code contains 4 errors, all of which would previously have been caught during run-
time, but are now detectable at compile-time: 
 
class txn extends uvm_sequence_item; 
  `uvm_object_utils(txn); 
  rand bit[31:0] data; 
  ... 
endclass 
  
class producer extends uvm_component; 
  `uvm_component_utils(producer) 
  xvm_put_export#(txn) prod_exp; 
  xvm_blocking_put_export#(txn) prod_b_exp;  
  ...  
endclass 
  
class consumer_foo extends uvm_component; 
  `uvm_component_utils(consumer_foo) 
  xvm_put_port#(txn)cons_port; 
  xvm_nonblocking_put_imp#(txn, consumer_foo)cons_nb_imp;  
  function bit try_put(txn t); 
   `uvm_info("TRY_PUT", $sformatf("txn value is %d", t.data), UVM_NONE);  
   return 1; 
  endfunction 
  function bit can_put(); 
   `uvm_info("CAN_PUT", "Yes, we can put", UVM_NONE);  
   return 1; 
  endfunction 
  ... 
endclass 
  
class consumer_bar extends uvm_component; 
  `uvm_component_utils(consumer_bar) 
  xvm_put_imp#(txn, consumer_bar)cons_imp; // FAILURE 1 
  function bit try_put(txn t); 
  `uvm_info("TRY_PUT", $sformatf("txn value is %d", t.data), UVM_NONE);  
  return 1; 
  endfunction 
  function bit can_put(); 
    `uvm_info("CAN_PUT", "Yes, we can put", UVM_NONE);  
    return 1; 
  endfunction 
... 
endclass 
  
class test extends uvm_test; 
`uvm_component_utils(test) 
  
function new(string name = "test", uvm_component parent = null); 
  super.new(name, parent); 
endfunction 
  
producer prod; 
consumer_foo cons_foo; 
consumer_bar cons_bar; 



  
function void build_phase(uvm_phase phase); 
    prod = producer::type_id::create("prod", this); 
    cons_bar = consumer_bar::type_id::create("cons_bar", this); 
    cons_foo = consumer_foo::type_id::create("cons_foo", this); 
endfunction 
  
function void connect_phase(uvm_phase phase); 
  prod.prod_exp.connect(cons_foo.cons_port); // FAILURE 2 
  prod.prod_b_exp.connect(cons_foo.cons_nb_imp);// FAILURE 3 
  cons_foo.cons_nb_imp.connect(prod.prod_exp); // FAILURE 4 
endfunction 
  
task run_phase(uvm_phase phase); 
   phase.raise_objection(this); 
   ... 
   phase.drop_objection(this); 
endtask 
endclass 
 
In the example shown above, we are going to see two compile-time failures, which would otherwise have been a 

run-time failure. Here is a description of all the failures mentioned above as FAILURE # 
 
1. Missing Implementation – There will be a compile-time failure at this line as there is a missing implementation 

of can_put() method in the consumer class. The consumer class which has a xvm_put_imp should have 
all the three methods, put(), try_put() and can_put() implemented as it implements the Interface 
classes xvm_blocking_put_if and xvm_nonblocking_put_if which has these three methods 
defined as pure virtual. 

2. Illegal Port Connectivity - The attempt to use port type as an argument to the connect method of an export will 
fail at compile-time because the port type is of xvm_port_check_if Interface class and the argument to an 
export’s connect method can only be of xvm_export_check_if type. 

3. Illegal Interface Connectivity – The attempt to connect an import of nonblocking types with an export of 
blocking type will fail as the blocking export does not implement the xvm_nonblocking_put_if Interface 
class and hence the nonblocking import will not be class compatible with the blocking export type. 

4. Illegal Method Calls – Calling connect method on an imp will fail at compile-time now as this method does 
not exist in the base class xvm_imp. It would have failed at run-time in the previous implementation as these 
checks would have been done at run-time. 

 
VI.   CONCLUSION 

The UVM TLM implementation provides the features a user may need but lacks the ability to check legality at 
compile-time, burdening the user with run-time. Taking advantage of modern design patterns such as Interface classes 
and Mixins, we have rearchitected our TLM implementation to detect common errors, such as illegal port connections, 
illegal method calls, incompatible interfaces, and incomplete interface implementations at compile-time.  By shifting 
these checks from run-time to compile-time, we have reduced the latency to detect such errors, allowing DV engineers 
to complete their work faster.  

The code for ‘xvm’ classes is released in GitHub under Apache 2.0 License [6]. 
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