
 Direct IP Integration: 
 Involves manually wiring IPs into a common 

simulation environment.
 Useful for situations like integrating IPs into an SoC 

environment to get a full behavioral model.

 Indirect IP integration:
 Involves two active and separate IP simulations 

exchanging data through software interfaces.
 Useful for quickly verifying interaction behavior 

between two IPs without requiring serious 
alterations.

 Testbenches:
 Signals leave and enter 

testbenches through DPI 
(Direct Programming 
Interface) tasks.

 DPI Tasks:
 DPI tasks interact with 

C++ based IPC interface 
software.

 IPC Interfaces:
 C++ IPC interfaces 

interact with shared 
memory.

 Intercommunication 
between parallel 
simulations happens by 
having one simulation 
send a packet while the 
other waits to receive a 
packet.

 Simulations are halted 
when waiting to receive 
a packet in shared 
memory.

 Testbenches switch 
roles after 
sending/receiving 
packets

We would like to thank Vijayakrishnan Rousseau for his technical guidance and valuable 
knowledge in the fields of validation and verification.

[1] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012) , vol., 
no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595.

[2] The Open Group, "POSIX - Base Specifications, Issue 7," IEEE Std 1003.1-2017, The Open Group, 2018. [Online]. Available: 
https://pubs.opengroup.org/onlinepubs/9699919799/

Nicholas Nuti (nicholas.nuti@intel.com)
Srinivasan Jambulingam (srinivasan.j@intel.com)

Intel Corporation

Interoperability Validation 
Without Direct Integration

INDIRECT INTEGRATION METHOD

DIRECT VERSUS INDIRECT INTEGRATION MOTIVATION

RESULTS

SOFTWARE BEHAVIOR SIMULATION SOFTWARE INTERACTIONS
 C++ and SystemVerilog IPC and Shared Memory Setup

 Controller TB needs to run C++ functions to set up IPC, set up shared 
memory, and tell the Receiver TB where to connect to shared memory.

 SystemVerilog DPI Send and Receive Tasks
 DPI send tasks will send signal data to C++ software to be piped into 

shared memory of other IP for digesting.
 DPI receive tasks will receive data by telling C++ software to read from 

shared memory. These tasks halt simulation progress to provide a 
pseudo-synchronous behavior between IP simulations.

 C++ Send and Receive Functions
 Functions utilized by SystemVerilog testbenches for sending signal data 

to shared memory of the opposite IP and for reading its own shared 
memory.

 C++ and SystemVerilog Simulation Cleanup
 Controller TB needs to run a C++ function to tell the Receiver TB that 

the simulation is ending. Receiver destroys shared memory, sends an 
ACK (acknowledgement), and ends its own sim. Controller TB receives 
the ACK, destroys shared memory, and ends its own simulation.

 Simplified Interoperability Validation Setup
 Lack of common and adaptable simulation setup process
 Overcomplicated simulations because consolidation

 Debug of Multi-IP Simulations
 Debugging of multi-IP simulation setups is difficult for 

engineers inheriting new IPs because of environment and IP 
requirements

 Leads for debugging focus astray from interoperability

 Simulation Environment Maintenance:
 Requirements of IPs change for every iteration which 

becomes difficult to maintain when dealing with multiple 
IPs in one simulation environment


