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Abstract-Simulation of multiple HDL IPs (Hardware Description Language Intellectual Property) can be a 

cumbersome endeavor that may delay SoC (System on Chip) validation. The proposed verification method uses an IPC 

(Inter-Process Communication) framework and DPI (Direct Programming Interface) to indirectly integrate HDL IPs into 

a simulation environment to validate interoperability. Without waiting for integration to happen, we can validate 

interoperability ahead of time to reduce surprises at the SoC level. 

 

I.   Introduction 
Contemporary methods of validating SoC IP interoperability tend to be arduous and time-consuming because 

they lack a standardized functional validation methodology. An SoC is made of many interconnected IPs that can be 

developed and verified in isolated conditions. Lack of initial collaborative effort between IP teams can lead to 

increased validation complexity because IPs have varying simulation environment requirements and preexisting work 

must be modified to directly integrate other IPs. Direct IP integration in interoperability validation will require 

extended support from other teams during setup because simulation environments must be merged. Combining IP 

modules and testbenches can be difficult because projects may have incompatible prerequisites. Further, a lack of a 

standardized and seamless integration method increases project duration and can cause validation teams to find bugs 

late in the overall development process. 

This paper discusses an unobtrusive and accessible method of multi-IP simulation with the aim of optimizing 

and simplifying the process of interoperability validation. 

 

II.   Background 
Interoperability validation commonly has issues that can disturb or delay results. Some obstacles that can 

obstruct interoperability validation include convoluted SoC and IP simulation setups, differences between simulation 

setups, and the challenge of directly integrating multiple external IPs into a single simulation environment. Dealing 

with these issues while maintaining the validity of integration testing can be a formidable assignment. We must change 

the multi-system validation status quo. This section outlines the project motivation, problems associated with current 

industry practices, and research and preexisting work done to develop the indirect integration method. 

 

Motivation 

Motivation for the development of an indirect integration validation platform is driven by the need to decrease 

interoperability validation complexity, normalize a common validation methodology, and optimize turnaround time 

of vital testing results. Through normalization of interoperability validation practices, users can consistently use the 

same validation platform for different projects and link simulations of external IPs seamlessly all while requiring 

minimal amounts of changes to preexisting IP simulation environments. Creating a standard and separated IP 

interoperability validation framework greatly reduces complexity because users do not need to conform to software 

or simulation setup requirements that are otherwise essential when users directly merge IP modules and testbenches. 

Our validation method focuses on the preceding information to simplify interoperability validation as a whole and 

reduce the time necessary to produce IP conformance results. Traditional IP interoperability validation methods are 

error and issue prone; our validation method ventures to solve these issues with structure and minimization of changes 

in simulation environments. 

 

Industry Practices 

 Typical industry practices for IP interoperability compliance involve validation teams being tasked with 

directly merging IP modules and testbenches into one project. Engineers working on interoperability validation receive 

IP simulation projects from other teams (possibly internal or external to the company) and incorporate these external 



projects into their own simulation environment. Assimilation of external simulation setups into preexisting validation 

environments can lead to setbacks during simulation setup, debug, and maintenance. 

 

1. Interoperability Validation Setup 

 Validation of multiple IPs communicating with each other involves consolidation of those IPs into a single 

simulation environment. Validation engineers adopt the external IP simulations into their own simulation domain 

testbench. Instantiation of external IP modules into non-native simulation environments requires considerable brute-

force and can result in a plethora of issues. Forcing two simulations together can cause messy setups that lack common 

procedures and have overcomplications due to unnecessarily rigid requirements.  

 
1.A Lack of a Common Process 

Validation setups that are absent of a common build process risk having complications from obscure, 

unexpected, or unknown requirements. Engineers do not commonly have adaptable multi-IP simulation systems that 

can run interoperability validation and quickly produce results. Therefore, the cost of multi-IP simulation setup can 

vary dramatically between projects and this lack of consistency results in sporadic approaches that increase project 

duration. 

 
1.B Overcomplicated Simulation Environments 

 Validation testbench complexity elevates when disparate IP modules and testbenches are merged together. 

Simulation environments can contain requirements that involve specific simulation software, simulation software 

revisions, language compilers, include-files, libraries, etc. When integrating an external IP simulation environment 

into another simulation environment, the environment accepting the external IP environment must adopt its 

requirements for proper operation. Assimilating those requisites into the environment of operation may cause conflicts 

or other issues that must be overcome by engineers. To combat these issues, engineers must overcomplicate their 

simulation setups to accommodate requirement differences between the original simulation environment and the 

merged external IP simulation environment. Excessively complex interoperability validation simulation environments 

lead to convoluted systems and delays in IP interoperability compliance results. 

 

2. Debug of Multi-IP Simulations  

Multi-IP interoperability simulation environments that utilize direct integration run the risk of requiring 

extended setup debugging and having complicated debug sessions with external teams. Complexity of a simulation 

platform containing two separate IPs increases as requirements vary. These simulation setups become difficult to 

debug for engineers inheriting new IPs to validate and for engineers that own the IP that is being inherited, because 

requirements of both IPs need to be juggled and the validation environment needs to be habituated for multiple IPs. 

In addition, future debug sessions become difficult as engineers from the team inheriting an IP and the engineers from 

the team that developed the IP both have to look at unfamiliar code. When integrating external IPs into other simulation 

environments, teams might need to continually debug more than just IP functionality. 

 

3. Simulation Environment Maintenance 

 Requirements for interoperability validation may change for every new iteration of IP, therefore multi-IP 

interoperability simulation testbenches might have significant changes for every new IP iteration. If IPs are 

continuously changing in a multi-IP consolidated simulation environment, then the interoperability validation platform 

becomes difficult to maintain. Significant IP modifications may result in changes in simulation software, libraries, 

etc., which may spawn new conflicts with requirements established by another IP in a multi-IP simulation 

environment. 

 

Research and Prior Work 

Research for the indirect interoperability validation project revolved around tactics for enhancing 

manageability of multi-IP simulation environments, specifically concerning the previously mentioned issues with 

practices in the validation industry. We explored topics such as: DPI, C++ shared memory, and SystemVerilog 

simulation tactics. 

 We began with a documentation review to enhance and broaden our knowledge on various tools and 

techniques. We referenced SystemVerilog simulation tactics and DPI information and syntax from the SystemVerilog 

Language Reference Manual (LRM) [1]. Using the SystemVerilog LRM, we found that “An imported task has the 

same semantics as a native SystemVerilog task: it never returns a value, and it can consume simulation time” 



(SystemVerilog Section 35.2.1). Using this idea and a single-threaded simulation enforced by usage of SystemVerilog 

tasks, we found that we could mimic synchronous behavior between two separate simulation instances. This is further 

discussed in the methodology section. The other research topic scrutinized was C++ shared memory. Before knowing 

about shared memory, we needed to figure out how to share data between applications. We already had the IP port-

level connections available for multiple IPs in C++ via DPI, so we needed a way to transfer the port-level data between 

the C++ programs attached to the IP simulation environments. We searched around for possible libraries to use and 

came across the notion of shared memory. An in-depth description of shared memory and the shared memory API can 

be found in the POSIX Standard [2]. With shared memory and memory mapping, from the memory management API 

[2], we found that we could allocate and organize memory resources and map those memory resources to the 

input/output ports of our C++ applications interfaced with our simulation testbenches. 

Further groundwork for the research involved in this project was established by prior efforts on our IP simulations. 

The mentioned simulations involved DPI and shared memory to export simulation data to companion C++ programs. 

Relevant simulation environment work completed prior acted as the catalyst for starting the project, but significant 

changes in structure and data handling were necessary to attain the current design model. 

 

II.   Methodology 
 In the proposed validation method, we implemented a straightforward approach to simplify and standardize 

the setup and runtime of simulations used to verify the behaviors between HDL IPs. Our technique involves the idea 

of indirectly implementing IPs in simulation environments using IPC and DPI ports1. 

 

Inter-Process Communication 

An IPC interface was employed to link two entirely separate yet active simulations. IPC is a technique that 

grants process synchronization via a bus like shared memory. More specifically, IPC can synchronously link 

multiple independent simulation environments indirectly through common memory locations stored in kernel space. 

To apply IPC to our simulation efforts, we had to associate important IP ports with DPI ports, import functions used 

for transferring packetized data between simulations and memory, and add arguments to our simulation environment 

compilation script. Therefore, using IPC to verify behavior between IPs simplifies validation efforts because 

simulation setups require minimal changes to use IPC and are run independently so setup and runtime requirements 

become less stringent than what is required when merging IP simulations.  

 

SystemVerilog Direct Programming Interface 

 DPI ports were created in our system so that SystemVerilog testbenches could interact with the C++ IPC 

system. Using DPI granted us the ability to standardize how our separate simulation environments send and receive 

task data and minimize the testbench modifications necessary to simulate IP communications. Verifying behavior 

between IPs using our method requires that independent IP simulation environments linked through IPC agree on port 

direction and match the number and order of DPI ports between the IPs. Application of DPI in our simulation 

ecosystem has turned the setup process into a simple addition of a block of code so that interoperability can be tested 

quickly before SoC-level direct integration. 

  

Indirect IP Integration in Simulation 

 Our idea of indirect IP integration stems from the idea of having two separate HDL simulations access shared 

kernel space memory. When simulating transmissions between two IPs indirectly, one simulation environment is 

responsible for writing to memory at address A and reading from memory at address B while the other simulation 

environment is responsible for reading from memory at address A and writing to memory at address B. Data leaves 

and enters testbenches through DPI ports and is written to and read from system memory; so, the active simulations 

only require each other to be present at runtime. Using our method, IP interoperability can be quickly tested with 

minimal effort. Now, working IP simulation environments can be slightly modified and independently compiled and 

run to validate interoperability before merging simulation testbenches directly. Even having IP simulation 

environments that operate with different software is not a problem, the software will handle the DPI port interactions 

the same. 

 

Data Handling 

 Data is handled in a producer and consumer format with individual data lines for each data transmission 

direction (initiator sends to receiver and receiver sends to initiator). The producer is the IP that is sending a packet, 

 
1 DPI ports are module ports connected to DPI tasks and functions. 



and the consumer is the IP that is receiving a packet. During simulations, one IP must be the producer and the other 

IP must be the consumer at a given point in time. After the consumer has received a packet, the producer switches to 

the consumer and the consumer switches to the producer. Both IPs must have context switching to send and receive 

packets every clock cycle of the simulation. Our implementation uses this method of data handling to produce 

simulated synchronous communication between IPs (Figure 1). 

 

 Our methodology gave us the ability to validate interoperability between IPs seamlessly. We were able to 

link separate IP simulations in parallel and have these simulations synchronously exchange port data. 

 

 
Figure 1: Parallel Simulations with IPC Flow 

 

Simulation Setup Process 

 Implementation of indirect integration validation via IPC requires some upfront effort due to its distinct 

nature. The following outlines an abbreviated set of steps used to incorporate IPC into RTL simulation environments. 

Please note that, due to space constraints, it is not possible to provide code examples beyond what is presented. 

 

1. Address Testbench Requirements 

 The goal of indirect integration is to have separate simulation environments communicate with each other at 

the port-level. To achieve this kind of communication between testbenches, relevant IP ports need to be able to write 

to and read from an integrated IPC system via DPI. Engineers desiring to validate IPs via indirect integration must 

consider the following: 

 

- Understand which IP ports need to be connected to DPI and what logic is driven by external IPs. 

- Code that is driving signals that should otherwise be driven by another IP must be removed. 

- If a clock is supposed to be sent from one IP to another, then another method of clock transfer must be 

devised. For example, validators can send the value of the clock period via DPI to the other testbench; from 

there the other testbench generates the clock based on the received clock period. 

- Asynchronous signals transferred between IPs must be clocked synchronously through the DPI ports; our 

method does not allow for asynchronous transfer. 

- Simulation data must be sent out through DPI ports on the edge of the clock that is opposite to that with 

which it is normally associated. 

- The current IPC interface is only capable of operating in a single clock domain. 

- IP simulation environments require the following DPI tasks imported: a C++ function to setup shared 

memory interfaces, a C++ function to send data to shared memory, a C++ function to read data from shared 

memory, and a C++ function for relinquishing the shared memory. 



- IP simulation environments require the following DPI tasks exported: a SystemVerilog task for transferring 

buffered data from shared memory into an active simulation, and a SystemVerilog task for running “$finish” 

to end the RTL simulation. 

- Commands to build the simulation environment need to include C++ files. 

 

2. Address IPC Code Requirements 

 C++ code requirements of the indirect validation method are simple in idea but can be difficult to implement. 

The following must be adhered to in order to produce a successful interaction between IP simulation environments 

using IPC: 

 

- IP simulation environments require their own respective C++ files. 

- The following DPI tasks should be “extern” instantiated in the C++ code: SystemVerilog task for reading 

DPI port data into an active IP simulation, and a SystemVerilog task for running “$finish” to end the RTL 

simulation. 

- The shared memory interfaces must be constructed at the beginning of each IP simulation and destructed at 

the end of each IP simulation. 

- Shared memory must have a sender pipe and receiver pipe for each IP simulation environment. 

- One IP must be sending while the other is receiving; this produces the pseudo synchronicity. 

 

3. Create SystemVerilog DPI Send and Receive Tasks 

 Simulation ecosystems that use IPC will require at least three DPI tasks: a task to send data to shared memory, 

a task to read and buffer data from shared memory, and a task to pipe the buffered read data into the active RTL 

simulation. RTL simulation environments are capable of telling the IPC system to forward DPI port information to 

shared memory for another testbench to digest; the DPI task signature for sending data from the RTL simulation to 

the IPC shared memory is shown in Figure 2. 

  

// Instruct IPC to read DPI ports and send data to shared memory 
task send_to_shm({signal_out_tb_1, signal_out_tb_0}) 

 

Figure 2: DPI Task for Sending Simulation Data to Shared Memory via IPC 

 

 Having a testbench read data from another testbench is quite different from writing. The testbench initiating 

the read must instruct the IPC system to read shared memory (Figure 3) and ultimately send the read data to the DPI 

ports of the testbench that initiated the read (Figure 4). 

 

// Instruct IPC to read shared memory and buffer the read data 
void read_from_shm(); 

 

Figure 3: C++ Function Imported to SystemVerilog Simulation via DPI to Read Shared Memory  

 

// Pipe the buffered read data into the RTL simulation 
task receive_in_tb(bit [1:0] data); 
 signal_in_tb_0 = data[0]; 

signal_in_tb_1 = data[1]; 
endtask 

 

Figure 4: DPI Task Used as a C++ Callback for Forwarding Buffered Read Data into Simulation DPI Ports 

 

4. Add DPI Task Imports and Exports to Testbenches 

 DPI will reference external C++ functions that will send data to and receive data from other RTL simulation 

environments. These RTL testbenches will need to import these C++ functions in the following manner shown in 

Figure 5. Note that C++ functions called by SystemVerilog are imported and SystemVerilog tasks and functions called 

by C++ are exported. Note also that IP testbenches should have their own unique C++ functions. 

 

 

 



import “DPI-C” context task send_to_shm (bit [0:1] data); 
import “DPI-C” context task read_from_shm (); 
export “DPI-C” task receive_in_tb (); 

 
Figure 5: DPI Task Imports and Exports 

 

5. Create C++ Send and Receive Functions 

 C++ code that is used in indirect integration needs the ability to write to and read from shared memory 

interfaces while also being able to interface with DPI ports. We can use the DPI tasks already created in “3. Create 

SystemVerilog DPI Send and Receive Tasks” because imported DPI tasks must match the names of preexisting C++ 

functions. Therefore, we need a function to send data from DPI ports to shared memory (Figure 6) and a function to 

read data from shared memory into an IP simulation (Figure 7). For further information, please view Figure 1 and 

reference section “35. Direct Programming Interface” of the SystemVerilog Language Reference Manual (LRM) [1].  

 
// Send RTL Sim DPI Data to Shared Memory 

             extern “C” void send_to_shm(svBitVecVal *data) {    
   while(!shm_buff_ready); // Wait for existing packet to be read 

shm_buff = data; 
packetvalid = true; 

} 
 

Figure 6: C++ Pseudo Code for Sending DPI Port Data to Shared Memory 

 

// Receive Shared Memory Data and send to RTL Sim DPI Ports 
extern “C” void read_from_shm () {  
       While(!packetvalid); // Wait for new packet to be sent 
      readdata = shm_buff; 

             receive_in_tb (readdata); 
shm_buff_ready = true; 
packetvalid = false; 

} 
 

Figure 7: C++ Pseudo Code for Reading Shared Memory into DPI Ports 

 

6. Execution 

 The full simulation runtime consists of three major modes: setup, active IP communication, and simulation 

end. Flow diagrams of each simulation mode operation are shown in Figure 8, Figure 9, and Figure 10. The flow 

diagrams detail the behavior of a simulation environment containing two IPs integrated indirectly and an IPC system 

with shared memory lines. Also, the flow diagrams detail our project and how the contents of this paper helped us to 

complete it. Please note that the boxes in Figure 8 that contain “send packet” and “receive packet” are explained in 

further detail through Figure 1, and the functions established below are from previous subsections within the 

“Simulation Setup Process” section. This subsection discusses the inner workings of our project execution to serve 

as a thought-provoking example. 

 The setup portion of our simulation ecosystem requires that the controller IP simulation is started before the 

external IP simulation. The controller IP simulation generates two shared memory lines and the external IP latches 

itself to the shared memory lines. One shared memory line is for the controller to write to and the external IP to read 

from and the other line is for the opposite. After both active IP simulations are connected to the shared memory 

lines, the controller sends a packet to be digested by the external IP simulation and waits for an acknowledgement. 

The external IP simulation reads the packet from shared memory, sends an acknowledgement back, and waits to 

read another packet from the controller IP simulation. Now that the IPC interface is tested, the IPs can perform their 

typical operations and send/receive packets every clock cycle. 

 The IPC active section of the simulation process is similar to how usual simulation flows start: clocks start 

switching and data transfers between IPs. Specifically, the controller will use the “send_to_shm()” SystemVerilog 

DPI task to send signal data to the linked C++ function where the data will be stored in shared memory. The 

controller testbench will change context and run the “read_from_shm()” SystemVerilog DPI task which calls the 



imported C++ function. The C++ function “read_from_shm()” accesses data from shared memory and uses 

“receive_in_tb()” SystemVerilog DPI task to transfer data from C++ to the RTL simulation environment. While 

running “read_from_shm()”, the controller IP testbench will stop all operations until it reads a packet from the 

shared memory that the external IP writes to. Switching focus to the external IP, when the controller IP writes to its 

shared memory the external IP testbench will already be waiting for a packet because it ran “read_from_shm()”. 

After receiving a packet, the external IP testbench will turn around and write to its shared memory using 

“send_to_shm()” and then immediately run “read_from_shm()” and halt. The controller testbench will then receive 

the packet the external IP wrote to shared memory, and the controller testbench will continue operating until it runs 

“read_from_shm()” again. This process of IPs alternating reads and writes happens for the majority of the simulation 

runtime until the ending phase starts. 

 The ending phase is triggered by the controller IP sending a packet for signaling the end of the simulation 

to shared memory. Next the controller IP simulation waits for an acknowledgement from the external IP simulation. 

When the external IP simulation initiates its next shared memory read, the external IP reads the termination packet 

and sends an acknowledgement back to the controller IP. The external IP simulation runs “$finish” and the 

controller IP simulation gathers the termination packet acknowledgement. Lastly, the controller IP simulation 

destructs the shared memory interfaces and runs “$finish” to end the rest of the running processes. 

 

 
Figure 8. Indirect Validation System—Setup Mode 

 



 
Figure 9. Indirect Validation System—IPC Active Mode 

 
Figure 10. Indirect Validation System—Finish Mode 

 

III.   Results 
 The validation results involve terse details about the project that used indirect IP integration and how we 

achieved our goals via this method. Our project involved two simulation environments, our IP environment and an 

external IP environment. The main task was to have our IP communicate with the external IP by sending setup 

commands, sending data, and reading statuses. Initially, we merged our IP simulation testbench with the external IP 

testbench; this method proved to be difficult to implement and maintain. To further optimize our interoperability 

validation between our IP and the external IP, we implemented the indirect IP integration into our validation 

environment. Application of the indirect integration method took us less than a week to implement for our 

interoperability validation ecosystem. In short, indirect IP integration aided us in setting up our IP and the external IP 

simulation environments quickly and consequently led us to find bugs and oddities. Indirect IP integration helped us 

separate independent IP changes in simulation environments, loosen compilation requirements, and supply the 

external IP team with our simulation environment with almost no setup required. The standardization of ports and 

implementation of IPC has even made it easy for us to interact with other IP and for other teams to setup and simulate 

with our IP. Overall, IPC and DPI have proven to be effective tools and integration of them into our IP validation 

environment has made simulation environment configuration and execution painless.  



 

IV. Challenges and Limitations 
 While this paper discusses the major benefits involved with using indirect IP validation, there are some 

drawbacks that can be solved through future developments but exist in the current state of the method. This section 

details some of the challenges and limitations associated with the indirect integration validation method. 

  

1. Asynchronous Signals: 

 Signals that are transmitted between IPs that are asynchronous must be clocked and therefore made 

synchronous when using IPC. Asynchronous signals do not inherently work in the current implementation because 

the SystemVerilog tasks used for interacting with shared memory halt the simulation. Halting the simulation is how 

we achieve pseudo synchronicity because simulations are not allowed to progress until buffered data is read from 

shared memory (on the negative edge of the associated clock). Signals that do not adhere to a clock can be 

implemented but the complexity rises because the simulation or the C++ programs will need to become 

multithreaded and involve a separate shared memory space just for asynchronous signals. 

 

2. More Than Two IPs Communicating: 

 Simulation environments that require more than two IPs constantly communicating with each other have 

not been tested with the indirect integration validation method. There are multiple ways to create an indirect 

integration simulation method for validating the interoperability of more than two IPs. An example would be to have 

a “round robin” chain of shared memory where communications are in a constant sequential chain. In summation, 

simulating with more than two IPs indirectly integrated was out of scope for our implementation and therefore has 

not been verified. 

 

3. Multiple Clock Domains: 

 Sometimes IPs need to send signals between each other that are associated with differing clock domains. 

The concept of having signals of multiple clock domains transmitting across the IPC system has not been tested but 

is entirely possible. For example, if a user had signals in two clock domains and the clock domains were multiples of 

each other, then the IPC could operate in the faster clock domain. Even though signals of the slower clock domain 

would be sent to shared memory at the rate of the faster clock domain, the receiving testbench should still clock the 

signals in using the slower clock domain because changes to the signal sent to shared memory will occur at the 

speed of the slower clock domain. A further limitation would be clock domains that aren’t multiples of each other; 

this would require two shared memory interfaces and parallelism that is out of scope for this paper. 

 

V.   Conclusion 
 Our method of interoperability validation and an application of it have proven to be successful. The results 

from employing the method to our IP and an external IP showed that indirect integration is simple to use and can 

reduce time and effort required when setting up and running multi-IP simulation environments. Indirect integration of 

IPs in validation is more efficient than merging IP modules and testbenches and has the ability to refine IP 

interoperability validation before direct SoC interoperability validation by making simulation setups easier to prepare 

and use. 

 In the future, we plan on implementing asynchronous signals across the IPC domain and understanding the 

simulation statistics of validation with direct versus indirect IP integration. Altogether, this paper examines an efficient 

method of interoperability validation that can expedite validation of multi-IP simulation environments. 
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