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Abstract-Artificial Intelligence / Machine Learning (AI/ML) applications rely on repeated Multiply and Accumulate 

(MAC) operations for training and inference. While many energy efficient circuits for performing the MAC operations 

exist, for many AI/ML systems the limiting factor for total power consumption is the cost of moving data from memory to 

the calculating unit. In-Memory Compute (IMC) is a strategy that seeks to reduce the cost of moving data by doing 

computation within the memory unit itself. Many IMC solutions are fundamentally mixed-signal in nature, and accurate 

prediction of system behavior and power consumption often requires expensive and time consuming analog simulations. 

In this work, a set of real valued SystemVerilog models for emulating the behavior of an IMC design are presented. 

System components modelled include the Static RAM bit cell, DAC, and ADC. These models provide a way to simulate a 

large IMC system with nearly analog accuracy but at nearly digital speed, and provide full-system power consumption 

estimates under realistic compute load scenarios. 

 

I. INTRODUCTION 

A. Neurons for Artificial Intelligence 

Circuits for Artificial Intelligence and Machine Learning (AI/ML) are composed primarily of Convolutional 

Neural Networks (CNNs). The fundamental building block of CNNs is the neuron, whose operation can be 

represented mathematically as 

 ,[5] 

in which an array of input values xj are multiplied by a set of weights wkj, the results summed, and the sum passed 

through a so-called activation function φ() to determine the neuron’s response yk. This is a Multiply and ACcumulate 

(MAC) operation.  

B. Impetus for In-Memory-Computing 

Due to the importance and centrality of the MAC operation in AI/ML, many performance-optimized 

implementations of MAC circuits have been designed in recent years. These developments have shifted the 

performance bottleneck in AI/ML systems to other necessary processes, particularly the process of moving weights 

and computation values between memory and the MAC core. A brief survey of published literature produced the 

estimates of the amount of energy consumed by memory access that are collected in Table I. 

 

 

 

 

 

 

 

 



TABLE I  
ESTIMATES OF ENERGY PER MEMORY ACCESS 

Energy per 

Access (J) 

Size of 

Access (bits) 

Read (R) 

or Write 

(W) 

Source 

10n – 50n  R/W Trajkovic, Jelena & Veidenbaum, Alexander & Kejariwal, A.. 
(2008). “Improving SDRAM Access Energy Efficiency for Low-

Power Embedded Systems.” ACM Trans. Embedded Comput. Syst.. 

7. 10.1145/1347375.1347377.  

640p 32 R Murmann, “Mixed-Signal Techniques for Embedded Machine 

Learning Systems,” presented at CERN EP-ESE Electronics 

Seminar, Aug 2019 

2n 64  Verma, et.al., “In-Memory Computing: Advances and Prospects,” 
IEEE Solid State Circuits Magazine, Summer 2019 Vol 11 No 3, p. 

44 

20p 1  M. Horowitz, "1.1 Computing's energy problem (and what we can 
do about it)," 2014 IEEE International Solid-State Circuits 

Conference Digest of Technical Papers (ISSCC), San Francisco, 

CA, 2014, pp. 10-14, doi: 10.1109/ISSCC.2014.6757323. 

Thus, we can estimate that a single bit memory access requires on the order of 25 pJ of energy. 

In order to optimize the total system power consumption, some designers are focusing on methods of performing 

the MAC operations directly within the memory. This is termed In-Memory Computing (IMC), or alternately 

Computing In Memory (CIM). This paper reviews one particular type of circuit used for IMC, demonstrates that it is 

a mixed-signal circuit, and describes how a Real Number Modeling (RNM) methodology can be used to perform 

detailed functional simulations of a system containing IMC with performance approaching that of a pure digital 

simulation. We first present the circuit to be modeled, then describe SystemVerilog language constructs that model 

the circuit behavior, and present simulation results and performance data indicating that both the level of detail and 

simulation throughput are sufficient for verifying IMC AI/ML systems and predicting their power consumption.  

 

II. CIRCUIT TO BE MODELED 

A. Description of Operation 

The representative IMC subsystem to be modeled (from [3]) is depicted in block diagram form in Figure 1. It is a 

modified Static Random Access Memory (SRAM) in which the word lines (horizontal) are driven by Digital to 

Analog Converters (DACs) to values between and including the supply and ground, and the bit lines (vertical) are 

headed by current sources and terminated with resistors, in addition to the usual line buffers (not shown). 

Figure 2 depicts a single bit cell of Figure 1 in detail. For normal operation, writing into the bit cell is 

accomplished by asserting a value (and its complement) on the bit-lines (BL and ) and asserting the word-line 

(WL). Reading the stored value is done by raising WL while sensing BL and . However, if instead of driving WL 

completely on (all the way to the supply) we bias it in the active region of M5 and M6, the latch will leak current 

onto the bit-lines. The amount of leakage will be proportional to the product of the bias voltage and the value stored 

in the bit cell. Thus, by driving the word line with a DAC, we can effectively multiply the stored bit cell contents 

with a multi-bit value (the DAC input), and sense the results by measuring the relative amount of leakage current. 

Since all of the bit cells in a column share a bit line, their leakage currents (representing the products of interest) will 

sum together, thereby performing the accumulation part of the MAC operation. The total summed current on each 

bit line flows in the terminating resistor of that bit line, converting the MAC result into a voltage that can be 

rendered back into the digital domain with an Analog to Digital Converter (ADC), as shown in the lower right of 

Figure 1. 

We assume an M x N bitcell array with DAC resolution j bits and ADC resolution k bits. Currents will sum on the 

vertical bit-lines where a ‘0’ value stored in the bit cell will contribute a negative current to the bit line and a ‘1’ 

value stored in the bit cell will contribute a positive current. This performs the needed MAC function (shown here 

without the activation function φ and using i as the summation index): 

 
The weights wki are N bits wide, the input vectors xi are j bits wide, and the output is N x k bits wide. 

For additional details of operation, the reader is referred to [3]. 



B. Design Considerations 

The current sources at the top of the bit lines must source enough current to provide the maximum leakage sink 

current, which occurs when all the stored values in a column are ‘0’ and the DAC is at its maximum value. The 

termination resistors should be sized such that the sourced current (assuming balanced ‘1’ and ‘0’ stored values in 

the column) produce a voltage at the center of the input range of the ADC. Word line drive for read and write 

operations can be provided by a special DAC setting, or by a separate line driver in parallel with the DAC. 

Similarly, bit line write drive can be provided by special purpose settings of the current sources, or by separate 

drivers in parallel.  

 

III. SYSTEMVERILOG CODE FOR MODELING CIRCUIT FUNCTIONS 

To demonstrate the capability and advantages of using RNM for behavioral analysis and verification of IMC for 

AI/ML, we developed a set of RNM models in SystemVerilog that we then used to construct and simulate a sample 

IMC memory of the type described above. 

A. User Defined Nettypes used for the IMC Models 

The RNM models for this demonstration rely on the User Defined Nettype (UDN) capability defined in the 2012 

version of the SystemVerilog standard [6]. UDNs are powerful modeling tools since they are treated as nets by the 

simulator, can carry nearly any data type or combination of data types, and can support a user defined function that 

can resolve the value of the net in the presence of multiple drivers. The latter is termed a User Defined Resolution 

function (UDR). 

One UDN we call WLnet was designed specifically for the purpose of modeling the DAC-driven word lines. Its 

SystemVerilog definition is shown here. 

 

  
 

The UDR is shown below. 

typedef struct { 

   enum {OFF, s0, s1, s2, s3, s4, s5, s6, s7, ON} state; 

   }  t_WLnet; 

 



 
 

The operation of the UDR is summarized in Table II. 

Table II 
SUMMARY OF WLNET UDR OPERATION 

Driving Condition Net Resolution 

More than one driver = ON ON 

One or more drivers = ON, one or more drivers = OFF X 

Exactly one driver = ON, no drivers = OFF ON 

No drivers = ON, one or more drivers = OFF  OFF 

One or more drivers = s*, no drivers ON or OFF Greatest s* value driver wins 

 

The resolution function was included to allow modeling of a separate read/write line driver in parallel with the 

DAC (as mentioned previously and shown in [3]), although that design approach was not followed for this 

demonstration. If separate line drivers were used, they would drive the WLnets with ON, OFF, or no drive while the 

DACs would drive the intermediate s* states. 

Modeling of the current summing on the bit lines, as well as power consumption (current drain) on the supply 

ports (vdd, vss) was accomplished using the EEnet (Electrical Equivalent net) UDN developed by Cadence Design 

Systems ([7],[8]). This UDN has independent real elements V, I, and R that represent respectively voltage, current, 

and resistance of an electrical element. The reader is referred to [7], [8] for detailed information on the EEnet. 

function automatic t_WLnet res_WLnet (input t_WLnet driver[]); 

  integer j, k, m; 

  k = 0; 

 

  foreach (driver[i]) begin 

     k++; 

  end 

 

  res_WLnet.state = driver[0].state; 

 

  if (k > 0) begin 

    for (j=0;j<=k;j++) begin 

       for (m=0;m<=k;m++) begin 

          if (j != m) begin 

             if (driver[j].state == OFF) begin 

                if (driver[m].state != ON) 

                   res_WLnet.state =  driver[j].state; 

                else 

                   res_WLnet.state =  'X; 

             end 

             if (driver[j].state == ON) begin 

                if (driver[m].state != OFF) 

                   res_WLnet.state =  driver[j].state; 

                else 

                   res_WLnet.state =  'X; 

             end 

             else if (driver[j].state > driver[m].state) begin 

                 res_WLnet.state =  driver[j].state; 

             end 

             else begin 

                 res_WLnet.state =  driver[m].state; 

             end 

          end 

       end 

    end 

  end 

 

endfunction : res_WLnet 



B. Modeling the Bit Cell 

Supply current consumption for various states of operation are parameterized within the bit cell model, so that the 

effects of low-level circuit design decisions on total system power can be assessed. The model parameters are 

combined based on the dynamic operation of the bit cell, and the total is assigned to the vdd and vss EEnets. Code 

is shown here. 

 
 

A portion of the SystemVerilog behavioral description of the bit cell is as follows. Note that iSupply, the 

variable assign to the “I” element of the vdd and vss EEnets, is assigned the parameter values of iWrite, iCalc, 

or iLeak depending upon the state of the bit cell (continued in the next block of code as well). 

 
A logic value stores the contents of the bitcell (content). Leakage currents that map to the s0-s7 states of WL are 

defined in an array scaleFactor. A write cycle begins when the state on the word line is ON and the write enable 

bit wEN is set. The supply current is set to the value defined in iWrite, and the voltage values (bL.V and bLb.V) on 

the bit-lines are compared to a threshold value blThd and 1, 0, or X is stored in content. A read cycle occurs 

when the read enable bit rEN is set. The supply current is set to iCalc, and the currents to be driven onto the bit 

lines is set to max or min (scaleFactor[7]) depending on the stored contents. 

If the read enable is asserted but the word line is in one of the intermediate states s0 – s7, the bit cell is being used 

as a multiplier, as modeled by this bit of SystemVerilog: 

parameter real iWrite = 1e-6; 

parameter real iCalc = 1e-8; 

parameter real iLeak = 1e-11; 

real iSupply; 

 

assign vdd = '{`wrealZState, ((supplyOn == 1'b1) ? -iSupply : 0.0), 0}; 

assign vss = '{`wrealZState, ((supplyOn == 1'b1) ?  iSupply : 0.0), 0}; 

 

module bitCell ( 

  inout EEnet vdd, vss, bL, bLb, 

  input WLnet WL, 

  input logic wEN, rEN 

  ); 

logic content = 1’bx; 
real scaleFactor [0:7] = '{0e-6, 10e-6, 20e-6, 30e-6, 40e-6, 50e-6, 60e-6, 70e-6}; 

// Write or Read cycle 

always @ (posedge wEN or posedge rEN) begin 

  // write-enable and read-enable are mutually exclusive  

  #1ps          // delay for proper sampling of values 

  if ((WL.state == OFF) || (WL.state == 1'bx)) begin  // bit cell OFF 

    iSupply = iLeak; 

    blI = 0.0; 

    blbI = 0.0; 

  end 

  if (WL.state == ON) begin   // Logic Write ON. Set content holding register 
        if (wEN == 1'b1) begin 
           iSupply = iWrite; 
           content = ((bL.V - bLb.V) == `wrealXState) ? 

              1'bx : ((bL.V - bLb.V) > blThd) ?  

                     1’b1 : ((bL.V - bLb.V) < -blThd) ? 1'b0 : 1'bx ; 
           blI = 0.0; 
           blbI = 0.0; 
        end 
        else begin // must be (rEN == 1'b1) 
           iSupply = iCalc; 

  // Logic read; currents are max/min  

  // depending on register contents           
           blI  = (content == 1) ? scaleFactor[7] : -scaleFactor[7];  

           blbI = (content == 1) ? -scaleFactor[7] : scaleFactor[7];  

        end 
  end 



 
The bit line currents are set by indexing the scaleFactor array with the enumerated state integer equivalent. 

Supply current is set to iCalc. In the last two lines, the bit line currents set during a multiplication, normal read 

cycle, or standby event get assigned to the I (current) elements of the bL and bLb nets. The `wrealZState value 

assigned to the V (voltage) elements will allow the EEnet resolution function to determine the final voltage on the 

bit lines once the current contributions of all the bit cells are summed and the termination resistor is connected. 

At the falling edge of wEN or rEN, iSupply is set to iLeak, and the bit line current drive is set to 0 (shown 

above).  

C. Modeling the DAC 

Since power optimization is one of the primary reasons for using IMC, a focus of our modeling for this 

demonstration is accurate representation of power supply currents in all the blocks. To realistically model the DAC 

supply current, we assumed that the DAC would consume most of its current while changing state. To model this 

behavior, we included parameters in the DAC model for power-on idle current (iActive) and output updating 

current (iSettle). Code that uses these parameters is shown here. 

 

  else begin 

        // WL is a DAC state 

        // bitLine current depends 

        // on DAC and contents 

        blI = scaleFactor[WL.state - 1]*(content ? 1 : -1);    

        blbI = -scaleFactor[WL.state - 1]*(content ? 1 : -1);  

        iSupply = iCalc; 

  end 

end    // always @ (posedge wEN ... 

 

always @ (negedge wEN or negedge rEN) begin 

     if ((wEN === 1'b0) && (rEN === 1'b0))  

// Write / Read cycle ended, set supply current back to background 

        iSupply = iLeak;   

     blI = 0.0; 

     blbI = 0.0; 

  end 

 

  assign bL  = '{`wrealZState, blI, 0};  // contribute bitLine current 
  assign bLb = '{`wrealZState, blbI, 0}; // contribute bitLineB current 

 



 
For normal writing of logic values to the memory row, drive the WLdrv input to 0 or 1. The DAC model sets its 

WLint enumerated variable to OFF or ON. To use the memory row to multiply, float WLdrv (set to X or Z), and the  

DAC uses the enum.next() built-in method to select an appropriate analog output state based on the value of 

dacIn. Finally, WLint is assigned to the output WL. In each branch of the code (except OFF), the variable iChange 

is set to the value of iSettle for 10 ps. The iChange value is summed with the (relatively) static value of 

iSupply and assigned to the “I” elements of vdd and vss. This modeling style allows for a very detailed 

representation of the dynamic power consumption of the application while maintaining the simple enumerated 

representation of the DAC output. 

D. Other Models, Assembling the Memory 

Space constraints prohibit presentation of models of other system components. A uniform modeling philosophy, 

in keeping with that presented here, carries throughout the demonstration subsystem. Multiple generate statements 

are used to replicate the bit cell into an arbitrary number of rows and columns, as shown here. 

enum {OFF, s0, s1, s2, s3, s4, s5, s6, s7, ON} WLint; 

always @ (supplyOn) begin 

     if (supplyOn == 1'b1)  

        iSupply = iActive; 

     else 

        iSupply = 0.0; 

   end 

always @ (dacIn or WLdrv or supplyOn) begin 

     if ((WLdrv == 1'b0) || (supplyOn == 1'b0)) begin 

        // drive is logic 0, or DAC is OFF 

        WLint = OFF; 

        iChange = 0.0; 

     end 

     else if (WLdrv == 1'b1) begin 

        // drive is logic 1 

        WLint = ON; 

        iChange = iSettle; 

        #10ps iChange = 0.0; 

     end 

     else begin // WLdrv is X or Z 

        WLint = WLint.next(int'(dacIn+1)); 

        iChange = iSettle; 

        #10ps iChange = 0.0; 

     end 

  end 

assign WL = '{WLint}; 
assign vdd = '{`wrealZState, -iSupply-iChange, 0.0}; 
assign vss = '{`wrealZState,  iSupply+iChange, 0.0}; 

 



 
 

 

IV. RESULTS 

The model implemented omits the head-end current sources for simplicity, so the center voltage and thus the 

threshold for the comparators (1 bit ADCs) is 0V. 

 

Figure 3 shows some signals in the demonstration SRAM model during a write cycle. The resolution function of 

the EEnet used to represent the supply (VDD) provides summation of all current flow out of the supply. The figure 

shows a small peak of current as the word line driving DACs update (seen as the nets WL[7:0] update), and then a 

much larger peak as the write current of all the bit cells activated during that cycle write the input to their contents. 

During the write cycle, the bit lines bL and bLb are driven to 0V or 1V (VDD) in accordance with the data to be 

stored. Near the bottom right of the figure, one can see two bit cell content holders updating. 

 

Figure 4 shows some signals in the demonstration SRAM model during a MAC (read) cycle. Once again, the 

EEnet sums up the total current at VDD. For this operation, the DAC update peak is larger than the read current, 

which is primarily contributed to by the leakage current from each bit cell proportional to the word line bias driven 

by the DACs. The two bit cells (from column 6 and column 3) illustrated in the figure are both in row 7 and share a 

// Build bitCell Rows first for inclusion into the array 

// COLUMNS is a parameter 

 

module bitCellRow # (COLUMNS=8) 

( 

  inout EEnet VDD, VSS, 

  inout EEnet  bL [COLUMNS-1:0], bLb [COLUMNS-1:0], 

  input  WLnet WL, 

  input  logic wEN, rEN 

); 

  genvar i; 

  generate // a row of bitcells COLUMN wide 

     for (i=0; i<COLUMNS; i++) begin : Columns 

        bitCell xBitCell (VDD, VSS, bL[i], bLb[i], WL, wEN, rEN); 

     end 

  endgenerate 

 

endmodule 

 

// This assembles rows of bitcells with WLDACs into an IMC array. 

module bitCellArray  

# (ROWS=8, COLUMNS=8) 

( 

  inout EEnet VDD, VSS, 

  input logic [2:0] DACIN [ROWS-1:0], 

  input logic [ROWS-1:0] WLdrv, 

  inout EEnet bL [COLUMNS-1:0], bLb [COLUMNS-1:0], 

  input logic wEN, rEN 

); 

  genvar i; 

  WLnet WL [ROWS-1:0]; 

 

  generate 

     for (i=0; i<ROWS; i++) begin : Rows 

        // One driving DAC per row 

        WLDAC xWLDAC (VDD, VSS, DACIN[i], WLdrv[i], WL[i]);  

        bitCellRow #(COLUMNS) xbitCellRow  

        (VDD, VSS, bL[COLUMNS-1:0], bLb[COLUMNS-1:0], WL[i], wEN, rEN); 

     end 

  endgenerate 

endmodule 

 

 

 



word line, which is driven to state 5 (signal WL[7] in the figure). The leakage currents for each bit cell, represented 

by the blI signals, are both 5 uA, but since the bit in column 6 has a 0 stored, its leakage is negative. Notice that the 

bit line voltages (bL and bLb) depend on the leakage contributed by all the bit cells in their respective columns, and 

are different values (although their signs match that of the individual currents, that is just a coincidence). The final 

readout of the MAC operation, after passing through the row of comparators, is 0x9F. Notice that bit 6 is 0 and bit 3 

is 1. This matches with the polarity of the column 6 bit line voltage (bL[6] = -0.28V) and the polarity of the column 

3 bit line (bL[3] = 0.0625V). 

 

The simulation test bench loaded a random 8x8 matrix of values (“weights”) into the memory early in the 

simulation, then proceeded to multiply that by a series of random 3x8 vectors (“inputs”) to produce a series of 1x8 

output values. In one run, the 8x8 matrix was { x67, x97, xbd, xd6, xa9, xa2, x0b, x1d }, and as an example this was 

multiplied by { 2, 2, 5, 6, 0, 5, 7, 0 } with a result of x87. 

 

The total simulated time was 250 µs, which enough to perform loading of the memory, 24 MAC operations, and 

reading out of the memory contents, ran in under 1 second and used 245M total core memory.  

 

V. CONCLUSION  

In-Memory Computing can be effective and save power in Machine Learning applications. IMC circuits are 

mixed-signal in nature and can be modeled using Real Numbers in SystemVerilog. Real IMC models can capture 

fine details of behavior, including current summing, analog delays, and peak and average power consumption. A 

real valued IMC model was presented and its operation described. These modeling methods have wide applicability. 

The real valued IMC model demonstrated acceptable simulation speed. 

 

VI. REFERENCES 

[1] Trajkovic, Jelena & Veidenbaum, Alexander & Kejariwal, A.. (2008). “Improving SDRAM Access Energy 

Efficiency for Low-Power Embedded Systems.” ACM Trans. Embedded Comput. Syst.. 7. 

10.1145/1347375.1347377.  

 

[2] Murmann, “Mixed-Signal Techniques for Embedded Machine Learning Systems,” presented at CERN EP-ESE 

Electronics Seminar, Aug 2019 

 

[3] Verma, et.al., “In-Memory Computing: Advances and Prospects,” IEEE Solid State Circuits Magazine, Summer 

2019 Vol 11 No 3, p. 44 

 

[4] M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International Solid-

State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 10-14, doi: 

10.1109/ISSCC.2014.6757323. 

 

[5] A. S. Glassner, Deep learning: A visual approach. San Francisco, CA: No Starch Press, Inc, 2021. 

 

[6] “IEEE 1800-2012 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and 

Verification Language”, IEEE Computer Society, USA, 2013. 

 

[7] A. Caicedo and S. Fritz, "Enabling Digital Mixed-Signal Verification of Loading Effects in Power Regulation 

using SystemVerilog User-Defined Nettype", DVCON Europe, 2019. 

 

[8] R. Sanborn, R. Mitra, Z. Fan, “Best Practices for Verifying Mixed-Signal Systems”, Cadence Application Notes, 

USA and Canada, 2018. (https://www.cadence.com/content/dam/cadence-

www/global/en_US/documents/company/Events/technology-on-tour/secured/analog-mixed-signal/07-best-practices-

for-verifying-ms-systems-sanborn-mitra-fan-cp.pdf, retrieved 9/16/2022). 

 

 

 

 

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/technology-on-tour/secured/analog-mixed-signal/07-best-practices-for-verifying-ms-systems-sanborn-mitra-fan-cp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/technology-on-tour/secured/analog-mixed-signal/07-best-practices-for-verifying-ms-systems-sanborn-mitra-fan-cp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/technology-on-tour/secured/analog-mixed-signal/07-best-practices-for-verifying-ms-systems-sanborn-mitra-fan-cp.pdf


 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagram of a single SRAM bit cell with DAC drive to the word line and 
showing the path of leakage currents. 

 

Figure 1. Diagram of the IMC subsystem to be modeled (based on [3]). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Some waveforms from a write cycle. VDD.I is amps, bL[*].V is volts. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Some waveforms from a MAC cycle. 

 


