
SystemVerilog Real Models for an In-Memory
Compute Design

Daniel Cross,

Sr. Principal Solutions Engineer

In-Memory Computing (IMC, CIM, etc.):

• What is it?

• Why is it needed for Machine Learning applications?

• How does it work?

• Is it really mixed-signal?

• How should we model it?

A Neural Network

input
vector

weights

summing
neurons output

vector

A Neural Network

input
vector

weights

summing
neurons output

vector

DUCK!

A Single Neuron
The output of Neuron k is given by

𝑦𝑘 = 𝜑 ෍

𝑗=0

𝑚

𝑤𝑘𝑗𝑥𝑗

As a computational algorithm, this is a
“Multiply and ACcumulate” or MAC operation.

Dedicated hardware in Graphics Processors is
very efficient at performing this operation.

The limiting factor in terms of time and power
consumption becomes moving the data
around . . .

w1

w2

w3

wkj

Σ

inputs xj

summing
neuron k

output
yk

weights
wkj

…

bias

φ()

“activation
function”

Estimates of Energy per Memory Access

• 10 – 50 nJ / access (write/read)

• 640 pJ / 32b read

• 2 nJ / 64b access

• 20 pJ / bit

Trajkovic, Jelena & Veidenbaum, Alexander & Kejariwal, A.. (2008).
“Improving SDRAM Access Energy Efficiency for Low-Power
Embedded Systems.” ACM Trans. Embedded Comput. Syst.. 7.
10.1145/1347375.1347377.

Murmann, “Mixed-Signal Techniques for Embedded Machine
Learning Systems,” presented at CERN EP-ESE Electronics Seminar,
Aug 2019

Verma, et.al., “In-Memory Computing: Advances and Prospects,”
IEEE Solid State Circuits Magazine, Summer 2019 Vol 11 No 3, p.
44

M. Horowitz, "1.1 Computing's energy problem (and what we can
do about it)," 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), San Francisco, CA,
2014, pp. 10-14, doi: 10.1109/ISSCC.2014.6757323.

Remember the neuron equation: 𝑦𝑘 = 𝜑 σ𝑗=0
𝑚 𝑤𝑘𝑗𝑥𝑗

If we can perform the needed MAC operations without moving the

data, we can save energy.

IMC relies on using SRAM bit cells as tiny 1-bit multipliers. There is

more than one strategy for doing this. We will focus on just one.

In-Memory Compute for Power Optimization

In-Memory Compute with SRAM

However, if instead of driving WL completely
on we bias it in the active region of M5 and
M6, the latch will leak current onto the bit-
lines. The amount of leakage will be
proportional to the bias voltage.

By driving the word-line with a DAC, we can effectively
multiply the bitcell contents with a multi-bit value by
sensing the relative amount of leakage current.

DAC

Ileak
Ileak

n

M x N bitcell array

DAC resolution is j bits

ADC resolution is k bits

Currents sum on the vertical bit-
lines (a ‘0’ value stored in the bitcell
will contribute a negative current)

Performs the needed MAC:
σ𝑖=0
𝑀 𝑤𝑘𝑖𝑥𝑖

The weights wp are N bits wide

The input vectors xi are j bits wide

The output is N x k bits wide

In-Memory Compute with SRAM

.

VDD

.bit
cell

bit
cell

bit
cell

bit
cell

WL

DAC
0

bit
cell

bit
cell

bit
cell

bit
cell

WL

DAC
1

.

.bit
cell

bit
cell

bit
cell

bit
cell

WL

DAC
M-2

bit
cell

bit
cell

bit
cell

bit
cell

WL

DAC
M-1

. .
 .

.

. .
 .

.

. .
 .

.

. .
 .

.

VSS

ADC
xN

N

M

N

For the word lines, we created a custom User Defined Nettype WLnet with
the following structure:

The ON state is used for writing (or reading) the bitcell contents. The
intermediate states s0-s7 correspond to values of the 3-bit WLDAC.

This design has at most one driver on each WL, but for future use we
included a resolution function that resolves to the value of the greatest
driver, with ON and OFF equivalent. Driving the net with ON and OFF
resolves to X.

We use the EEnet UDN to model supply nets.

SystemVerilog Real IMC Bitcell (bitCell.sv)

typedef struct {

enum {OFF, s0, s1, s2, s3, s4, s5, s6, s7, ON} state;

} t_WLnet;

The bitcell model has write-enable and read-enable controls in addition to
the word line and differential bit lines.

Supply currents are tracked based on the operating mode of the bitcell:

SystemVerilog Real IMC Bitcell (bitCell.sv)
module bitCell (

inout EEnet vdd, vss, bL, bLb,

input WLnet WL,

input logic wEN, rEN

);

parameter real iWrite = 1e-6;

parameter real iCalc = 1e-8;

parameter real iLeak = 1e-11;

real iSupply;

assign vdd = '{`wrealZState, ((supplyOn == 1'b1) ? -iSupply : 0.0), 0};

assign vss = '{`wrealZState, ((supplyOn == 1'b1) ? iSupply : 0.0), 0};

The EEnets used for vdd and vss sum up the dynamic active currents for the
entire memory to help with system power budgeting.

The bitcell enters a non-standby mode on rising edges of wEN or rEN,
depending upon the value of the word-line held in WL.state:

OFF:

SystemVerilog Real IMC Bitcell (bitCell.sv)

if ((WL.state == OFF) || (WL.state == 1'bx)) begin // bit cell OFF

iSupply = iLeak;

blI = 0.0;

blbI = 0.0;

end

A logic value stores the contents of the bitcell:
logic content = 1’bx;

Leakage currents that map to the s0-s7 states of WL are defined (in an array):
real scaleFactor [0:7] = '{0e-6, 10e-6, 20e-6, 30e-6, 40e-6, 50e-6, 60e-6, 70e-6};

SystemVerilog Real IMC Bitcell (bitCell.sv)
ON: (direct write or read)

else if (WL.state == ON) begin // Logic Write ON. Set content holding register

if (wEN == 1'b1) begin

iSupply = iWrite;

content = ((bL.V - bLb.V) == `wrealXState) ? 1'bx : ((bL.V - bLb.V) > blThd) ? 1’b1

: ((bL.V - bLb.V) < -blThd) ? 1'b0 : 1'bx ;

blI = 0.0;

blbI = 0.0;

end

else begin // must be (rEN == 1'b1)

iSupply = iCalc;

blI = (content == 1) ? scaleFactor[7] : -scaleFactor[7]; // Logic read; currents are max/min

blbI = (content == 1) ? -scaleFactor[7] : scaleFactor[7]; // depending on register contents

end

end

For a write cycle, supply current is set to iWrite, and the values on the bit-
lines are compared to a threshold value and 1, 0, or X is stored in content.

For a read cycle, supply current is set to iCalc, and the currents to be
driven onto the bit-lines is set to max or min depending on the stored
contents.

SystemVerilog Real IMC Bitcell (bitCell.sv)
Intermediate state (s0-s7) -- Multiplication:

else begin

// WL is a DAC state

blI = scaleFactor[WL.state - 1]*(content ? 1 : -1); // bitLine current depends

blbI = -scaleFactor[WL.state - 1]*(content ? 1 : -1); // on DAC and contents

iSupply = iCalc;

end

Supply current is iCalc. The bit-line currents are set by indexing the
scaleFactor array with the enumerated state integer equivalent.

At the falling edge of wEN/rEN, iSupply is set back to iLeak, and the bit-line
current drive is set to 0.

always @ (negedge wEN or negedge rEN) begin

if ((wEN === 1'b0) && (rEN === 1'b0))

iSupply = iLeak; // Write / Read cycle ended, set supply current back to background

blI = 0.0;

blbI = 0.0;

end

SystemVerilog Real IMC Bitcell (bitCell.sv)
The bit-line current gets assigned to the bL nets:

assign bL = '{`wrealZState, blI, 0}; // contribute bitLine current

assign bLb = '{`wrealZState, blbI, 0}; // contribute bitLineB current

Some extra logic corrupts the contents if supply is insufficient:
always_comb begin

if ((vdd.V >= (vddNom*0.9)) && (vdd.V <= (vddNom*1.1)))

vddOn = 1'b1;

else

vddOn = 1'b0;

if ((vss.V >= (vssNom-10e-3)) && (vss.V <= (vssNom+10e-3)))

vssOn = 1'b1;

else

vssOn = 1'b0;

if ((vddOn == 1'b1) && (vssOn == 1'b1))

supplyOn = 1'b1;

else

supplyOn = 1'b0;

end

always @ (supplyOn) begin

if (supplyOn == 1'b0)

content = 1'bx;

end

WLdrv=1 sets the DAC state to ON for direct write/read to the memory.
The internal state of the DAC must match the possible states for the WLnet:

SystemVerilog Real IMC WL DAC (WLDAC.sv)
module WLDAC (

inout EEnet vdd, vss,

input logic [2:0] dacIn,

input logic WLdrv,

output WLnet WL

);

enum {OFF, s0, s1, s2, s3, s4, s5, s6, s7, ON} WLint;

There is logic to determine the supply state (not shown), and iSupply is set
accordingly: parameter real iActive = 1e-8; // DAC on Q-current

always @ (supplyOn) begin

if (supplyOn == 1'b1)

iSupply = iActive;

else

iSupply = 0.0;

end

SystemVerilog Real IMC WL DAC (WLDAC.sv)
// Main DAC function

parameter real iSettle = 1e-6; // current needed to update DAC

always @ (dacIn or WLdrv or supplyOn) begin

if ((WLdrv == 1'b0) || (supplyOn == 1'b0)) begin

// drive is logic 0, or DAC is OFF

WLint = OFF;

iChange = 0.0;

end

if (WLdrv == 1'b1) begin

// drive is logic 1

WLint = ON;

iChange = iSettle;

#10ps iChange = 0.0;

end

else begin // WLdrv is X or Z

WLint = OFF;

WLint = WLint.next(int'(dacIn+1));

iChange = iSettle;

#10ps iChange = 0.0;

end

end

DAC idle states
slewing current is 0

DAC memory write/read state
slewing current is high

DAC “analog” operation, sets a state
s0 – s7
slewing current is high

Assign the output and supply ports:

SystemVerilog Real IMC WL DAC (WLDAC.sv)

assign WL = '{WLint};

assign vdd = '{`wrealZState, -iSupply-iChange, 0.0};

assign vss = '{`wrealZState, iSupply+iChange, 0.0};

Memory Structure – bitcell Array

module bitCellRow # (COLUMNS=8)

(

inout EEnet VDD, VSS,

inout EEnet bL [COLUMNS-1:0], bLb [COLUMNS-1:0],

input WLnet WL,

input logic wEN, rEN

);

genvar i;

generate // a row of bitcells COLUMN wide

for (i=0; i<COLUMNS; i++) begin : Columns

bitCell xBitCell (VDD, VSS, bL[i], bLb[i], WL, wEN, rEN);

end

endgenerate

endmodule

parameterized

Each row has COLUMN
instances of bitCell

Memory Structure – bitcell Array

module bitCellArray

(ROWS=8, COLUMNS=8)

(

inout EEnet VDD, VSS,

input logic [2:0] DACIN [ROWS-1:0],

input logic [ROWS-1:0] WLdrv,

inout EEnet bL [COLUMNS-1:0], bLb [COLUMNS-1:0],

input logic wEN, rEN

);

genvar i, j;

WLnet WL [ROWS-1:0];

generate

for (i=0; i<ROWS; i++) begin : Rows

WLDAC xWLDAC (VDD, VSS, DACIN[i], WLdrv[i], WL[i]); // One driving DAC per row

bitCellRow #(COLUMNS) xbitCellRow (VDD, VSS, bL[COLUMNS-1:0], bLb[COLUMNS-1:0], WL[i], wEN, rEN);

end

endgenerate

endmodule

parameterized

The array is built from ROWS instances of
bitCellRow and WLDAC
elements of bL and bLb span the rows

Memory Structure – top level (imcRAM.sv)
for (k=0; k<COLUMNS; k++) begin : bitLineTerminations

VRsrcG #(.tr(1e-10), .Kinc(1e-9)) bLres (

.P(bL[k]),

.vval(),

.rval(rTerm),

.imeas(ibL[k])

);

VRsrcG #(.tr(1e-10), .Kinc(1e-9)) bLbres (

.P(bLb[k]),

.vval(),

.rval(rTerm),

.imeas(ibLb[k])

);

end

always @ (negedge rEN) begin

for (n=0; n<COLUMNS; n++) begin

// The real summed value is discretize to a 1-bit value per column

bLreadInt[n] = ((bL[n].V - bLb[n].V) > (0.0)) ? 1'b1 : 1'b0;

end

end

1-bit ADC for read-out is the same for
product and content reading

(Head-end current sources
not modeled)

• Total simulated time : 250 µs,

• Tasks simulated : load memory, 24 MAC operations, read out memory contents

• CPU time : under 1 second

• Memory used : 245M

Results
Loading matrix value A =

67

97

bd

d6

a9

a2

0b

1d

Multiplying by vector value B =

2

2

5

6

0

5

7

0

Got result C = 87

Waveforms

row 7
col 6

write
cycle

Waveforms

row 7
col 3

MAC
cycle

row 7
col 6

WL7 drive

• In-Memory Computing can save power in Machine Learning applications

• IMC circuits are mixed-signal in nature and can be modeled using Real
Numbers in SystemVerilog

• Real IMC models can capture fine details of behavior, including current
summing, analog delays, and peak and average power consumption

• The real valued IMC model demonstrated acceptable simulation speed.

• Simulation time will scale linearly with memory size (unlike a device-level
electrical simulation, which might scale exponentially).

Conclusion

References / Acknowledgements
Verma, et.al., “In-Memory Computing: Advances and Prospects,” IEEE Solid State Circuits
Magazine, Summer 2019 Vol 11 No 3, p. 44 (original inspiration)

A. S. Glassner, Deep learning: A visual approach. San Francisco, CA: No Starch Press, Inc,
2021. (General neural network information)

R. Sanborn, R. Mitra, Z. Fan, “Best Practices for Verifying Mixed-Signal Systems”, Cadence
Application Notes, USA and Canada, 2018. (for EEnet information)
(https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/company/Events/technology-on-tour/secured/analog-
mixed-signal/07-best-practices-for-verifying-ms-systems-sanborn-mitra-fan-cp.pdf)

Paul McLellan’s blog Breakfast Bytes,
(https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes) particularly these
entries:

• How Is Google So Good at Recognizing Cats?

• Embedded Neural Network Summit—How to Build a Silicon Brain

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/technology-on-tour/secured/analog-mixed-signal/07-best-practices-for-verifying-ms-systems-sanborn-mitra-fan-cp.pdf
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/enns

Questions

• Can I get your full demonstration to run on my own?
https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w00000A
C1EREA1

(Cadence Support Account required)

• How do these models compare in behavior and/or simulation
performance with a schematic version?

We didn’t have (or build) a schematic version to compare to – sorry!

• Other Questions?

https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w00000AC1EREA1

