
Formal Verification Approach to Verifying Stream
Decoders: Methodology & Findings

Abhishek Asi, Anshul Jain, Aarti Gupta

Agenda Problem Statement

Introduction

Case Study

Methodology

Conclusion

Results

Introduction

Formal
Verification

Stream Decoders

Modern SoCs

Aim of the presentation
• Explore FV approach

tailored for stream
decoders

• Foster confidence in
FV as a robust tool
for ensuring the
correctness of
stream decoders

CPU - offloading
Modern SoCs use
specialized hardware
sub-systems to offload
certain computational
tasks from the CPU

Problem Statement

Power of Formal
verification

FV provides comprehensive
validation and mathematically

confirms design accuracy

Rising complexity
Due to evolving formats and

standards

Limitations of
conventional methods
Conventional methods miss corner-
case scenarios or subtle issues that

only a specific file can cause

Importance of Stream
Decoders

Correct functionality crucial to
prevent data corruption or loss

ZSTD file format

Basic functionality of stream decoders

Variable Sub-variable Range

Frame Header Frame Header

Descriptor

4 flags, one each for – frame content size,

single segment, checksum, and dictionary

Window Descriptor 0 to 2
64

- 1 bytes (16 Exabytes)

Dictionary ID 4 bytes can represent an ID 0-4294967295

Frame Content Size 0 - 2
64
– 1

Data Blocks Number of Blocks 1- ∞

Block Size 0 - 2
21
– 1

Block Content Arbitrary

Content

Checksum

Optional Arbitrary

Skippable

Frames

User Data Arbitrary

File Structure Number of Frames 1- ∞

Types of Frames ZSTD only, skippable only, both

Frame Order Different arrangements of ZSTD and skippable

Complexity of ZSTD stream decoders

Examples of corrupt input compressed files.
[Refer to the paper for more examples]

Methodology Solution #1: Vault & Verify

“Vault Phase”

“Verify Phase”

Incapable of
Detecting HangsCoverage Scalability

Complexity in handling
compressed files

01

03 02

Challenges with Vault & Verify

Methodology Solution #2: Quiesce Check
Start

Save reset value of
signal(s)

Pulse seen?

Yes

Compare current
value of signal(s)
with saved value

Match?

 Debug & Root-
cause Failures

QFC PassYes

No

Block all incoming
traffic

No

Allow DUT to drain
all outstanding

traffic
End

Quiesce Formal Checking Framework

01

03

0204

Overcomes the scalability
issues of the Vault &

Verify approach

Incapable of verifying the
correctness of design

behavior

Efficient method to
detect hangs

In-exhaustive
verification methodology

Challenges with Quiesce Check

Methodology Solution #3: Instant Inspection

ZSTD Compressed File
The sliding window width should be 14

bytes, which is the largest chunk of control
information available in contiguous form

Sliding Window
Analysis

Instead of analyzing the
entire compressed file,

a smaller sliding
window of the file is

analyzed

Dissection of
Verification Goals into

five major areas

Status Flag Verification

Data Integrity

Data Ordering

Latency Verification

Error Handling

Challenges with Instant Inspection

1

3 2

Complexity in Creating
Specifications

Crafting comprehensive
microarchitecture specification that
accounts for all possible scenarios is

challenging

Gaps in
Specifications
Considering the vast amount of

data a decoder processes,
ensuring the microarchitectural

specification is complete and
unambiguous is difficult

Requirement of Detailed Description
Detailed descriptions of intermediate checkpoints, typically documented in

microarchitectural specification

Hypothesis based Property Verification
Hypothesis-based method tackles the challenges of Instant Inspection

Helps to validate bugs and verify the
hypothesis formulated for checkpoints

Relying on compressed
file format and
decoding algorithm

Comparative view of suggested solutions

Case study: ZSTD Decompression Stream Decoder
ZSTD Stream Decoder used in Intel’s Xeon CPUs targeted for data-center applications. Refer paper
for the sample design waveform.

Results

15

32
4

5

3

4

Bug
Count 36

Frame/Block reset

Deadlocks

Soft error

Incorrect FSM transition

Counter
overflow/underflow

Data Integrity

Microarchitecture
Specification

Innovative Strategy using Instant
Inspection
The simulation team leveraged bug scenarios discovered
by FPV to develop targeted tests

1

Enabled recreation of bugs in a
controlled simulation environment

2

3 Validation of bugs and hypothesis
for checkpoints
Validated the existence of these bugs, facilitated a
detailed understanding of their behavior and
validated hypothesis for checkpoints

Corner case bug #1
Block Reset erroneously asserted:

• Hypothesis Formulation: "BLOCK_RESET" signal must be asserted whenever the decoder
has completed processing the current block and starts processing the next block.

• Bug Detection: This hypothesis underwent multiple iterations, resulting in several
failures, before finally detecting a buggy case for a specific compressed file.

Conclusion

BENEFITS OF
ADOPTION OF FORMAL
• Improved system performance
• Reduced risk of data corruption
• Enhanced user experiences

across various applications

INCREASED
CONFIDENCE

The findings increase confidence in FV
as a robust tool for ensuring the

accuracy and dependability of stream
decoders

EFFECTIVENESS OF
FORMAL

Results demonstrate the effectiveness
of FV approach for stream decoders in

modern SoCs

INNOVATIVE STRATEGY
Instant inspection with hypothesis

method and co-use of simulation and
FPV highlights an innovative way to

validate stream decoders

Q&A

	Slide 1: Formal Verification Approach to Verifying Stream Decoders: Methodology & Findings
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Problem Statement
	Slide 5: ZSTD file format
	Slide 6: Basic functionality of stream decoders
	Slide 7: Complexity of ZSTD stream decoders
	Slide 8: Methodology Solution #1: Vault & Verify
	Slide 9: Methodology Solution #2: Quiesce Check
	Slide 10: Methodology Solution #3: Instant Inspection
	Slide 11: Challenges with Instant Inspection
	Slide 12: Hypothesis based Property Verification
	Slide 13: Comparative view of suggested solutions
	Slide 14: Case study: ZSTD Decompression Stream Decoder
	Slide 15: Results
	Slide 16: Corner case bug #1
	Slide 17: Conclusion
	Slide 18: Q&A

