
AI - accelerating coverage closure using 

intelligent stimulus generation  
 

Jainender Kumar (Samsung-India), Ronak Bhatt (Samsung-India), Garima Srivastava (Samsung-India), 

Ashutosh Sinha (Cadence-India), Prashant Teotia (Cadence-India) 
 

Abstract- As the number of Intellectual Property (IP) cores in modern System-on-Chip (SoC) designs continues to grow, 
coupled with the increasing trend of multi-chip designs, the complexity of the bus matrix has significantly evolved. 
Interconnects are implemented across various layers to meet timing requirements and support many initiators and target 

ports with mixed protocols. Consequently, functional coverage has become a critical aspect of SoC verification, particularly 
for ensuring comprehensive validation of interconnects and their data paths. However, achieving functional coverage for 
such complex SoCs, which often involve an enormous number of bins—sometimes nearing a million—presents several 

challenges. For instance, an SoC with 150 initiators and 500 targets must cover the cross-product of parameters like 
initiator, target, size, length, burst, and others as applicable. This complexity can result in more than half a million bins, 
complicating their management, analysis, and reporting, necessitating substantial computational resources and advanced 

tools. 

To achieve full coverage for these bins in a complex SoC, thousands of iterations and extensive manual efforts are 
required. Moreover, after a certain point, when coverage saturation is reached, randomized input stimulus fails to provide 

significant incremental coverage in successive iterations. This occurs because the current randomization engine repeatedly 
hits the same bins, leading to diminishing returns in coverage progress. Consequently, this prolongs verification closure 
timelines and can adversely impact time-to-market. To address this issue, adopting artificial intelligence (AI) and machine 

learning (ML) technologies in the design verification (DV) environment is crucial. This paper proposes leveraging AI/ML-
based technology using "input-bias" feature of Cadence Xcelium SimAI  tool to accelerate functional coverage convergence 
while preserving the randomness of the stimulus. In the proposed approach, an input bias file is derived based on each 

initiator constraints and its corresponding accessible targets. This file is provided as input to the AI tool, which utilizes it 
to monitor coverage. Based on feedback, the AI tool determines which input constraints should be given higher weightage, 
ensuring that new cover groups and bins are targeted in subsequent iterations instead of repeatedly hitting the same bins. 

This approach not only prevents coverage saturation, but also enables faster coverage achievement in fewer iterations. 
Additionally, it facilitates the coverage of cross bins and the identification of corner-case scenarios at an early stage, 
significantly enhancing the efficiency and effectiveness of SoC verification. 

I. INTRODUCTION 

In modern SoC design verification, achieving comprehensive functional coverage efficiently is crucial to gaining 

confidence in overall SoC verification. Functional coverage, including cover groups and cover bins, plays a critical 

role in ensuring that various routes and scenarios within the interconnect are thoroughly verified. To handle today’s 

complex SoCs, more sophisticated and structured interconnect designs are employed to ensure proper timing closure 

and functional correctness.  

Specifically, in data route verification, it is essential to verify that the communication between different IP blocks 

and subsystems function as expected under all conditions. The sheer number of corner bins and coverage groups is 

growing exponentially, leading to significant challenges in achieving comprehensive verification. Furthermore, with 

coherent interconnects, it is necessary that initiators (coherent or non-coherent) and targets (DRAM, memory, SFR 

etc.) support various protocol configurations. In such scenarios, cover points that involve crosses of parameters such 

as source, destination, transaction type, data size, request type, and length result in a massive number of cover bins 

that must be covered within a limited timeframe.   

Covering such an extensive number of coverage groups becomes a bottleneck, making it impractical to cover all 

corner cases due to constraints on time and resources. Additionally, achieving coverage closure requires running many 

test cases With an increasing number of cover bins to hit, simulation times become prohibitively long, especially for 

large and complex SoCs. Moreover, large SoC designs demand significant memory and computational power to store 

and track coverage information across all cover groups and bins, leading to resource constraints in simulation farms 

operating under constrained environments. Limited resource availability makes exhaustively simulations for large 

designs infeasible, resulting in performance issues and extended verification timelines. Some corner cases may remain 

unreached during regular simulation runs, either due to the rarity of the conditions required to trigger them or because 

redundant coverage bins consume valuable simulation time.  

To address these challenges, an approach is required to achieve faster coverage closure within the verification 

timelines. The proposed method accelerates functional coverage by leveraging advanced technologies and 



methodologies, such as artificial intelligence (AI) and machine learning (ML). The paper specifically utilizes the 

"input-bias" feature of the Cadence Xcelium SimAI tool. This method effectively analyzes a large set of coverage 

bins (over 600K) and biases input constraints based on feedback, thereby improving both speed and accuracy.  

The proposed solution has been applied to real designs, resulting in a 30% reduction in overall bus verification 

closure time. This method uses iterative evaluation to maximize the coverage and achieve faster closure with fewer 

regression runs compared to the traditional approach. 

 

 
Figure 1 Multi-chip connected via UCIe in a typical 

 

On each iteration, the AI engine evaluates and identifies coverage holes. The machine learning model is then 

updated with information about its performance. The basic flow is to run random regression with coverage and 

randomization data. When coverage becomes largely saturated and is growing slowly, then use the AI tool to target 

coverage holes more efficiently. The AI tool can be trained at any phase of regression, using the previous run as the 

base regression session. After training, the toll iteratively repeats simulation runs to target coverage holes until 

coverage is fully closed. The key goal of the AI tool is not just to regain coverage, but to increase the probability of 

hitting coverage holes. During the coverage closure phase, the AI tool performs full random runs to stress the design 

in various ways while targeting coverage holes. 

II. SOC COVER GROUP STRUCTURE 

   For complex SoCs, it is crucial to ensure that combinations of source IP, destination IP, transaction types 

(read/write), data sizes, lengths, etc., are fully exercised. In such cases, cross-coverage tracks whether all combinations 

of these variables are covered. This is vital for testing SoCs with various subsystems connected through multiple levels 

of interconnect, supporting different protocols.  

However, as the number of cross-coverage bins increases, the combinations grow exponentially, leading to 

challenges such as longer simulation times and potential coverage gaps. Despite these challenges, cross-coverage is 

essential for the comprehensive verification of complex SoC designs. 

Figure 2 shows some of the possible combinations of cover groups for an AXI initiator accessing multiple targets, 

with constraints defined for each target.  

To create such extensive coverage groups for a complete SoC, a Perl script is used. Based on input files, containing 

initiator constraints, target address space, and initiator-target reachability, the script generates cover groups for each 

initiator targeting all the accessible targets. Additionally, the script generates monitor connection files, simplifying 

integration into any UVM-based framework environment. The script is also capable of ignoring illegal bins or invalid 

bins during the process. Figure 3 illustrates this workflow. 

 

  
Figure 2 Cover group formation for AXI initiator in an interconnect and corresponding similar cover group definition 

 



                                 

        
Figure 3 Script utilizing input files to generate plug n play coverage files. 

 
TABLE I 

COVERAGE BINS ANALYSIS FOR VARIOUS SOCS 

Parameter SoC 1 SoC 2 SoC 3 SoC 4 

No. of Initiators 134 149 143 202 

No. of targets 400 383 407 598 

No. of cover bins 1033K 604K 594K 1659K 

 

   The script maintains a initiator database and a target database to simplify the generation of cover 

groups for each initiator, as shown in Figure 4 and Figure 5, respectively. These databases contain 

various fields that are updated using the information provided in the input files, such as initiator 

constraints, reachability information, and target address range. For a particular initiator database, 

the fields can be added or modified as required. 

For example, in the case of the APB protocol, the target list is divided into active APB target 

(Slave_List_APB_A) and passive APB target (Slave_List_APB_P). This distinction is helpful 

while creating a cover group. For active targets, an initiator can have the possible direction of 

READ and WRITE whereas for passive targets, the possible direction is limited to READ. This 

ensures that unnecessary WRITE operations to the passive targets, which can potentially alter the 

behaviour of the RTL, are avoided. Maintaining such a list also helps to prevent the generation of 

illegal crosses. 

 

 
Figure 4 Master database format utilized by the Script 

 

 
Figure 5 Slave database format utilized by the Script 

 



   The coverage file output from the script will have a coverage group definition for each of the initiators as given 

below. 
covergroup cov_INITIATOR_M0; 

 option.per_instance = 1; 

 Read_IdTag : coverpoint INITIATOR_M0_item.IdTag 
  {  

  bins rid_value = {[0:15]}; 

 } 
 BurstKind : coverpoint INITIATOR_M0_item.Kind 

 { 

  bins kind[] = {INCR,WRAP,FIXED}; 
 } 

 BurstSize : coverpoint INITIATOR_M0_item.Size 

 { 
  bins size[] = {DENALI_CDN_AXI_TRANSFERSIZE_FOUR_WORDS}; 

 } 

 … 
 cp_INITIATOR_M0_direction_X_read_IdTag: cross Read_IdTag, Read_Direction ; 

 cp_INITIATOR_M0_direction_X_write_IdTag: cross Write_IdTag, Write_Direction ; 

 cp_INITIATOR_M0_X_TARGET_1: cross BurstLength, BurstKind, BurstSize, Direction iff (target_target == TARGET_1); 
 cp_INITIATOR_M0_X_TARGET_2: cross BurstLength, BurstKind, BurstSize, Direction iff (target_target == TARGET_2); 

 cp_INITIATOR_M0_X_TARGET_3: cross BurstLength, BurstKind, BurstSize, Direction iff (target_target == TARGET_3); 

 cp_INITIATOR_M0_X_TARGET_4: cross BurstLength, BurstKind, BurstSize, Direction iff (target_target == TARGET_4); 
 cp_INITIATOR_M0_X_TARGET_5: cross BurstLength, BurstKind, BurstSize, Direction iff (target_target == TARGET_5); 

  … 

     Depending on the project, valid cover groups are identified and listed in Figure 2. It is important to note that the 

number of cover bins increases 3-4x when the same die is implemented in a multi-die setup further complicating 

coverage closure.  

III. AI SETUP IN SIMULATION  

    The AI framework uses randomization and coverage data from the design and testbench to create a machine-

learning model that accelerates regression performance. This model learns from iterative regression sessions and 

generates optimized regressions based on predefined criteria, such as stressing specific design instances, minimizing 

directed tests, or maximizing regression throughput using random tests without committing seeds. The complete flow 

involves a series of steps that uses an existing regression (or simulation runs) as input, generate learning models, and 

synthesize an optimized version. Using this simplified flow, you can: 

• Apply machine learning 

• Synthesize a regression 

• Run the synthesized regression 

 

 

A. Machine Learning 

To implement a regression for machine learning, the simulator uses appropriate switches to analyse all the random 

variables during regression runs. This step creates a base regression run that serves as input for the AI tool to analyse 

and build a learning model. Any regression can be used as the base regression run, regardless of coverage levels.  

At the end of each base regression run, the AI tool generates several files containing configuration and path 

information, coverage bit-vectors, and randomization data necessary for regression synthesis. 

 

B. Synthesizing a regression  

During the synthesis phase, the AI tool enables an iterative learning flow framework, allowing it to repeatedly 

learn from the original input regression and other saved data. Within this framework, users can explicitly define use 

cases and convergence policies. For example, users can enable coverage maximization, directing the AI tool to 

synthesize a regression to target uncovered bins from the original regression. 

Running a synthesized regression helps generate scenarios targeting corner cases or other critical areas, improving 

coverage of error conditions. It can also be used for bug-hunting runs, filling a CPU budget, or targeting challenging 

bins, including cross-coverage bins requiring multiple runs. 

Finally, the AI tool generates a synthesized regression based on the base regression, which may include small, 

optimal, or exploratory regression runs. It saves datasets, learning models, synthesized regressions, and reports in a 

directory, which are used in subsequent iterations of learning. 

 



C. Run the synthesized regression 

The synthesized run from the earlier setup is then utilized with a default learning database to cover random 

variables across all possible cover group information. To refine convergence, a one-time input bias file is provided, 

containing cross-coverage definitions and user-specified random variables. This file enables the AI tool to analyse 

regression outcomes in line with the input bias structure. With each new regression run, the learning matrix is updated, 

allowing the AI tool to evaluate the impact of control knobs. 

The input bias file specifies valid bins for each initiator and accessible target, avoiding invalid bins that could 

degrade performance by wasting time attempting to close them. The input bias file is also generated using the same 

Perl script as discussed above. Below is an example of file content that is coverage-aware.  
 [ 

 {   "axiTransactionUsr::initiator_port_name": INITIATOR_M0   }, 
 {   "target_id_class::target_initiator_idx":      [83]                      }, 

 {    "axiTransactionUsr::target_name":    TARGET_1                 }, 

 {   "target_id_class::target_target_idx":    [210 ]                        },  
 {   "denaliCdn_axiTransaction::Direction": [1,2]                     }, 

 {   "denaliCdn_axiTransaction::Length": [1]                             }, 

 {   "denaliCdn_axiTransaction::Kind": [2]                                 }, 
 {   "denaliCdn_axiTransaction::Size": [1,2,4,8]                           } 

] 

  
 

IV. FEATURES 

The use of AI/ML tools for functional coverage offers the following features: 

A. Automatic constraints learning 

    The AI tool generates a learning model by analyzing all random variables in each base/main regression set. This 

model includes constraint variable information for all possible inputs stimulating the initiator in the design. The AI 

tool updates the learning model with each regression run, ensuring it adapts to the latest constraints scenarios.  

B. Intelligent feedback mechanism and coverage gap detection  

   The AI tool automatically analysis synthesized regression runs and compares them with the learning model from the 

previous runs to identify cover group patterns with a zero-hit ratio. Using coverage gap information, the AI tool 

recognizes uncovered cover groups and determines the convergence strategy for subsequent regression runs. 

Automatic coverage gap detection is especially critical for managing design with hundreds of thousands of bins.  

C. Optimized Stimulus generation: 

The input bias constraint file, generated from the cover group model, provides the AI/ML tool with visibility into 

the relationships between constraints and associated cover groups. The AI tool analyzes this information and biases 

the input stimulus to utilize specific random values effectively. 

D. Intelligent test stimulus 

Based on the input basis file, the AI tool eliminates redundant tests that do not contribute to additional 

coverage. Subsequent runs are more targeted at uncovered bins while maintaining randomization, ensuring 

efficient resource utilization.  

  

V. ADVANTAGES 

The implementation of AI/ML-based coverage closure streamlines functional coverage achievement and offers 

the following benefits: 

A. Dynamic Stimulus adjustment 

The proposed approach allows input bias stimulus to be dynamically adjusted at any stage of the coverage activity 

based on the base regression set. This feature enables seamless utilization of both generic test vectors and AI-

synthesized test vectors, making the approach robust and adaptable.  

B. Easy implementation. 

Integrating AI/ML into the regression setup is a one-time effort performed at the start. The setup is easily portable 

to other projects with minimal changes. Furthermore, the automatic generation of input bias file makes it independent 

of the number of bins or the scale of the design, allowing effortless implementation in any SoC. 

C. Scalable approach 

The method is highly scalable and independent of design architecture. It is future-ready and can be implemented 

in multi-die architecture with minimal additional effort. The AI tool demonstrates superior performance for larger 

designs, offering high coverage efficiency. 



D. Efficient resource utilization 

By optimizing test vectors and synthesizing regressions, the AI tool significantly reduces the number of iterations 

required to achieve coverage closure. This compressed regression approach maximizes overage while minimizing 

simulation time, computer resources, and memory requirements. 

E. Reduced Time-to-Market 

AI/ML-based coverage-driven verification enables early analysis of corner-case cover groups and early detection 

of design bugs, significantly accelerating the time-to-market for products. 

VI. RESULTS 

When applied to a real design, the following results were achieved.  

A typical mobile platform fabric with approximately 100 initiators and 380 targets, targeting ~600 K bins, 

achieved saturation at 98%. After saturation, ~8.4K simulation hours of regression runs were required to achieve 100% 

coverage. However, using the proposed methodology, the time to achieve 100% coverage was reduced to ~3.8K 

simulation hours.  

It was observed that the AI tool delivers better results when trained early in the regression phase. For a typical 

hard-to-hit cover group, achieving the AI tool with the input bias solution showed significant improvement.  

Initiator: ~100 Targets: ~380  

Target coverage bins: > 300,000  

Original Regression > 8400Hrs (~98% coverage)  

Input Bias: ~3800 Hrs (100% coverage) 

 
TABLE II 

IMPROVEMENT FOR COVERAGE TO 100% USING AI TOOL 

Original AI synthesized run Sim time reduction 

Coverage  Original run Coverage  Original run 

89% to 98% ~8.4K 89% to 100% ~3.8K > 54% 

46% to 88% ~8.7K 46% to 100% ~3.8K > 56% 

 

 

 
Figure 6. AI generated coverage vs normal coverage after applying ML at 88% and 46% respectively. 

 



 
Figure 7. AI-generated coverage vs normal coverage applied on the same regression with different base regression 

 

Figure 7 shows a graph when applying AI to regression at an early stage of regressions. It is evident that 

higher gains are observed when AI is employed earlier. 

Covergroup: cov_wlbt_core_x_active_targets 

Initiator: wlbt_core Targets: ~380 

Target coverage bins: 9250 

Original Regression > 8700Hrs (~85% coverage) 

Input Bias: ~3800 Hrs (100% coverage) 

VII. CONCLUSION  

      The AI/ML approach has been implemented in various complex SoCs with coverage bins ranging from 0.7 million 

to 1 million. Under normal randomization stimulus, coverage typically saturates in the final stages, requiring more 

iterations to complete. In contrast, the input bias approach dynamically adjusts stimuli based on non-hit bins after each 

iteration, ensuring a constant increase in coverage. This dynamic adjustment prevents saturation and achieves 100% 

coverage closure in at least 30% less time. By leveraging AI/ML methodologies, this approach maximizes coverage 

with a reduced regression set, irrespective of the number of bins in a design. 

 

REFERENCES 
 
[1] Mammo, B. Reining in the Functional Verification of Complex Processor Designs with Automation, Prioritization, and Approximation. 2017. 

Available online: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/137057/birukw_1.pdf (accessed on 15 May 2024). 
[2] Siemens. Available online: https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-

verification-study/ (accessed on 15 May 2024). 
[3] Truong, A.; Hellström, D.; Duque, H.; Viklund, L. Clustering and Classification of UVM Test Failures Using Machine Learning Techniques. 

In Proceedings of the Design and Verification Conference (DVCON), San Jose, CA, USA, 26 February–1 March 2018. 
[4] El Mandouh, E.; Maher, L.; Ahmed, M.; ElSharnoby, Y.; Wassal, A.G. Guiding Functional Verification Regression Analysis Using Machine 

Learning and Big Data Methods. In Proceedings of the Design and Verification Conference and Exhibition Europe (DVCon), Munchen, 
Germany, 25 September 2018. 

[5] Ismail, K.A.; Ghany, M.A.A.E. Survey on Machine Learning Algorithms Enhancing the Functional Verification Process. Electronics 2021, 10, 
2688. 

[6] Varambally, B.S.; Sehgal, N. Optimising Design Verification Using Machine Learning. An Open-Source Solution. ArXiv 2020, 
arXiv:2012.02453. 

[7] Menzies, T.; Pecheur, C. Verification and Validation and Artificial Intelligence. Adv. Comput. 2005, 65, 153–201. 


